C++
Gyakorlat jegyzet

5. 6ra

A jegyzetet UMANN Kristof készitette HORVATH Gabor gyakorlata alapjan. (2018. aprilis 30.)

1. A C++ memoriamodellje

A C++ szabvany tobb memoriatipust kiilonit el. Ezek koziil elsGsorban a stack-et hasznaltuk eddig.

Globalis/Statikus Heap/Free store
Stack

1.1. Stack

A maésodik gyakorlaton méar volt sz6 részletesebben a stack miikodésérdl. Jusson esziinkbe egy nagyon
fontos tulajdonsaga: a blockok végén a valtozék automatikusan megsemmisiilnek. Ebben az esetben nem
a programoz6 feladata a memoria felszabaditéasa.

A stack-en létrehozott valtozokat szokas automatikus valtozéknak (automatic variable) is hivni.

Tekintsiik a masodik gyakorlatrél mar ismerds kodrészletet.

#include <iostream>

int £Q

{
int x = 0;
++X;
return x;

}

int main()

{
for(int 1 = 0; i < 5; ++i)
std::cout << f() << std::endl;
}
Kimenet: 1 1 1 1 1

A stacken lérehozott valtozok kezelése nagyon kényelmes, mert jol lathatod, mikor jonnek jonnek létre,
mikor semmisiilnek meg. Azonban el6fordulhat, hogy nem szeretnénk, hogy az x valtozé élettartama
megsziinjon a block végén. Ilyenkor egy lehetség a statikus valtozok hasznélata.

1.2. Globalis/statikus tarhely

Irjuk at a fenti £ fiiggvényt, hogy x ne automatikus, hanem statikus valtozé (static variable) legyen!

int £O

{
static int x = 0;
++X
return x;

}

int main() {/*...*/}



Kimenet: 1 2 3 4 5

Ebben az esetben azonban a fliggvény els6 hivasatol a program futdsdnak végéig benne marad a
memoriaban az x, {gy mindig egyre nagyobb szamokat ad majd £() vissza. Az x inicializacidja egyszer
torténik meg, a fliggvény elsé hivasakor.

1.2.1. Megjegyzés. Nem szeretjiik a static valtozokat. Példaul a tobb szalt programok esetén kiilo-
nosen keriilends ez a programozasi stilus.

A globélis valtozok és a statikus valtozok a memoria ugyanazon teriiletén jonnek létre. Ezért hivjuk
ezt a teriiletet globalis/statikus tarhelynek.

Amennyiben azt szeretnénk, hogy x ne semmisiiljon meg a block végén, de ne is maradjon a program
futasdnak a végéig a memoriaban, arra is van lehetGség. Ebben az esetben viszont a programozo felel a
memoria kezeléséért.

1.3. Heap/Free store

A heapen létrehzoott valtozokat dinamikus valtozoknak (dynamic variable) is szokéas szokas hivni. A
heap segitségével nagy szabadsagra tehetlink szert, azonban ez a szabadsig nagy felelGsséggel is jar.

int main()

{
int *p = new int(2);
delete p;

}

Fentebb lathatjuk hogyan lehet egy intnek lefoglalni helyet a heapen. Fontos, hogy a stack-et nem keriiltiik
meg, mert sziikségiink van egy pointerre, mely a heap-en lefoglalt cimre mutat (p).
A mutatoé altal mutatott teriiletet a delete operatorral tudjuk felszabaditani.

I

/

p

1. &dbra. Példa a heap mikodésére: p egy, a heapen lefoglalt memoriacimre mutat.

A heapen nincs a lefoglalt teriiletnek neviik, igy mindig sziikségiink lesz egy mutatora, hogy tudjunk
ra hivatkozni. Ha egyszer lefoglalunk valamit a heap-en, gondoskodni kell arrél, hogy felsza-
baditsuk. Az egyik leggyakoribb hiba a dinamikus memoriakezelésnél, ha a memoriat nem szabaditjuk
fel. Ilyenkor a lefoglalt memoriateriiletre hivatkozni mar nem tudunk de lefoglalva marad: elszivirog
(memory leak).

Bar az operéacios rendszer megprobal minden, a program altal lefoglalt memoriat felszabaditani a futés
befejeztével, de nem mindenhat6. Eléfordulhat, hogy egyes platformokon tjrainditasig nem szabadul fel
a memoria. Emellett ameddig a program fut, t6bb memoriat fog hasznalni, mint amennyire sziiksége van.
Ez novelheti a szerverpark koltségeit vagy ronthatja a felhasznaloi élményt.

A dinamikusan lefoglalt memoria szabalyos felszabaditasat szamos dolog neheziti. Fényes példa erre
a kivételkezelés, melynél hamarabb megszakadhat a fiiggvény végrehajtédsa mintsem, hogy felszabaditson
minden memoériat. Eléfordulhat, hogy egy memoriateriiletet kétszer szabaditunk fel, ami nem definidlt
viselkedés.

Elsfordulhat, hogy egy mar felszabaditott memoriateriiletre akarunk irni vagy onnan olvasni. Sajnos
ilyen jellegii hibat konnyd véteni, hisz a delete a p altal mutatott memoriateriiletet, nem a p-t fogja
torolni. A p tovabbra is hasznalhato.

1.3.1. Megjegyzés. A nullpointer térlésekor nem torténik semmi (no-op).



1.3.2. Megjegyzés. Amint elvesztettiik az utols6 mutatot, ami egy adott lefoglalt memoriacimre mutat,
az garantaltan elszivargott memoria. A szabvany nem foglal magaban semmilyen lehetéséget ezeknek a
visszaszerzésére.

Lathatjuk, hogy a heap hasznélata hibalehetdségekkel teli, raadasul az allokalas (memoéria lefoglalés)
még lassabb is, mintha a stack-et hasznalnank. De miért hasznéaljuk mégis? Ha meg lehet oldani, hogy
a stack-en tudjunk tarolni valamit, tegyilik azt. A stacken azonban véges, hamar be tud telni (stack
overflow), illetve kotott a valtozok élettartama. A heap-en e téren sokkal nagyobb a szabadsagunk.

2. Osztalyok felépitése

A kovetkez§ par gyakorlaton egy lancolt listat fogunk implementalni, mely jol demonstralja majd a
dinamikus memoriakezelés veszélyeit is.

A lancolt lista nevébdl eredendGen nem tombszertien (egyméas melletti memoriacimeken) tarolja az
objektumokat, hanem egymastol fiiggetlen memoriacimeken. Ezt ugy oldja meg, hogy minden adathoz
rendel egy pointert is, mellyel a kovetkezd listalemet el lehet érni. A lista utolsé elemében a pointer a
rakovetkezs elem memoriacime helyett nulpointer értéket vesz fel.

‘ data |*next‘

Lo 5] 4] {1 ]/]

2. adbra. A fenti képen egy listaelem, a lentin egy adatként int-et tarolo 4 elemt lancolt lista. Figyeljiik
meg, hogy az utols6 elem pointere nullpointer.

2.1. Struct-ok
Egy lancolt lista elemét implementalhatjuk pl. igy:

struct List

{
int data;
List *next;

I
Alkalmazzuk is ezt ugy, hogy a listaelemek dinamikusan legyen eltarolva!

int main()

{
List *head = new List;
head->data = 8; //(*head).data == head->data
head->next new List;

head->next->data = 7;
head->next->next = new List;

head->next->next->data = 2;
head->next->next->next = NULL;

delete head;
delete head->next;
delete head->next->next;

3

Ezen a ponton mondhatnank, hogy készen vagyunk, hisz List hasznalhato lancolt listaként (bar valojaban
igen kényelmetlen).

Sajnos a torlést rossz: elGszor torljikk a fejelemet (mely az els6 elemre mutat), viszont az elsé elem
segitségével tudnédnk a tébbi elemet elérni, igy mikor a mésodik listaelemet torélnénk, head mar egy



/

3. abra. Lancolt lista. Az els6 elem stacken, a t6bbi heapen van tarolva.

felszabaditott memoriateriiletre mutat. Ezt torlés utani hasznalatnak (use after delete) szokas nevezni és
nem definialt viselkedés.
A megoldas:

delete head->next->next;
delete head->next;
delete head;

2.1.1. Megjegyzés. A heap-en arra is figyelni kell, hogy jo sorrendben szabaditsuk fel a memoriat.
Ha rossz sorrendben szabaditjuk fel az objektumokat, kénnyen a fentihez hasonl6 hibat vagy memoria
szivargéast okozhatunk.

A valtozok a stacken a létrehozés sorrendjéhez képest forditott sorrendben semmisiilnek meg, pont emiatt.

Ez a Jancolt lista” eddig elég szegényes. A {6 gond az, hogy nagyon sokat kell irni a hasznélatédhoz.
Ez sért egy programozasi elvet, a DRY-t: Dont Repeat Yourself. Itt sokszor irjuk le kozel ugyanazt — erre
kell, hogy legyen egy egyszeriibb megoldas. Irjunk fiiggvényt az 1j listaelem létrehozésahoz!

List *add(List *head, int data)

{
if (head == 0)
{
List *ret = new List;
ret->data = data;
ret->next = 0;
return ret;
}
head->next = add(head->next, data);
return head;
}

Ez egy olyan rekurziv fiiggvény, mely addig hivja sajat magat, mig a paraméterként kapott lista végére
nem ér (azaz a head egy nullpointer). Amikor oda elér, létrehoz egy 1j listaelemet és azt visszaadja. A
rekurzio felszallo agaban a lista megfelels elemeit Gsszekapcsolja.

Irjunk egy fiiggvényt a lista altal birtokolt memoria felszabaditaséara is.

void free(List *head)

{
if (head == 0)
return;
free(head->next);
delete head;
}

Itt a rekurzio szintén a lista végéig megy. A rekurzié felszallo agédban torténik a listaelemek felszabaditésa.
Ennek az oka, hogy a felszabaditas a megfelel6 sorrendben térténjen meg.

2.1.2. Megjegyzés. A rekurziv fiiggvények nem olyan hatékonyak, mint az iterativ (pl. for vagy while
ciklus) tarsaik. Tovabba a sok fiiggvényhivéas konnyen stack overflow-hoz vezetnek. Azonban jo agytornak,
és segithetnek az alapotletben. Egy rekurziv fliggvényt mindig &t lehet irni iterativva.



Beszéljiink arrol, mennyi a teher a felhasznalon. Eddig tudnia kellett, milyen sorrendben kell felsza-
baditani az elemeket a listan beliile, de most mar elég arra figylenie, hog lista hasznalata utan meghivja
a free fiiggvényt. A felhasznald igy kisebb eséllyel kivet el hibat, tobb energiaja marad arra, hogy az
elstte allo problémét megoldja. Legyenek a fliggvényeink és osztalyaink olyanok, hogy kénnyd legyen
6ket jol hasznalni, és nehéz legyen rosszul.

2.2. Osztalyra statikus valtozdk

Teszteljiink!

int main()

{
List *head = 0;
head = add(head, 8);
head = add(head, 7);
head = add(head, 2);
free(head) ;

}

A program lefordult, és a gyakorlaton tokéletesen le is futott. Azonban, ha tortént memory leak vagy
double free, esetleg use after free, az nem definialt viselkedés. Ezért nem lehetiink benne biztosak, hogy
valoéban nem tortént memoriakezeléssel kapcsolatos hiba. A sanitizerek segitségével megy6zédhetiink rola,
hogy nem kévettiink el ilyen jellegti hibat.

Az osztalyon beliil statikusként deklaralt valtozokat osztalyszintd valtozoknak is hivjuk, ugyanis min-
den, az osztalyhoz tartozoé objektum ugyanazon a statikus valtozon ,osztozkodik”. Ha az egyiken keresztiil
azt a valtozot modositjuk, a tobbiben médosulni fog. Elettartamuk és lathatosaguk a program elejétdl
végéig tart.

Hozzunk létre List-ben egy szamlalot, ami szamon tartja mennyi objektumot hoztunk belle 1étre,
és semmisitettiink meg! Ezzek a triikkkel megnézhetjiik, hogy elfelejtettiink-e felszabaditani listaelemet.

struct List

{

int data;

List *next;

static int count; // !
}s

int List::count = 0;

List *add(List *head, int data)

{
if (head == 0)
{
List *ret = new List;
List::count++; // !
ret->data = data;
ret->next = 0;
return ret;
}
head->next = add(head->next, data);
return head;
}

void free(List *head)

{
if (head == 0)
return;



free(head->next) ;
List::count--; // !
delete head;

}
int main()
{
List *head = 0;
head = add(head, 8);
head = add(head, 7);
head = add(head, 2);
free(head) ;
std::cout << List::count; // !
}

Osztalyszintid valtozokat csak osztalyon kiviil tudunk definidlni (ezek alol kivételt képeznek az osz-
talyszintd konstans valtozok), ezért lathato az osztaly utan a kévetkezd sor:

Hint List::count = 0;

Ezzel a kis modositassal meg is kapjuk a kivant kimenetet: 0. Ez alapjan tudhatjuk, hogy minden
objektum toérlésre keriilt.

2.2.1. Megjegyzés. A fenti modositasok csak gyakorlas céljat képezték, az elkészitedd listanak nem
része a szamlalo.

Ha azonban egy elemet kétszer toroltiink, egyet meg elszivarogtattunk, az nem feltétlen nem deril ki.
Ilyenkos a sanitizerek segithetnek:

g++ list.cpp -fsanitize=address -g
A sanitizerekrdl bévebben lasd a 3. gyakorlat anyagat. Hatarozott el6relépést értiink el, de van még hova

fejleszteni a listankat. Szerencsére nem csak adattagokat, de tagfiiggvényeket is tudunk struct-okba irni.

2.3. Konstruktorok

Kényelmesebbé tehetjiik az életiinket, ha irunk egy tagfiiggvényt, mellyel kényelmesebben tudjuk létre-
hozni a listaelemeket :

struct List
{
//tagfigguények
List(int _data, List *_next = NULL)
{
data = _data;
next = _next;
}
//adattagok
int data;
List *next;
};

A fenti tagfiiggvényt, vagy metodust konstruktornak (constructor, vagy roviden ctor) hivjuk. A konst-
ruktorok hozzék létre az objektumokat; vannak paraméterei, és nincs visszatérési értéke. A fenti konrt-
ruktor még egy alapértelmezett paraméterrel is rendelkezik - ha mi csak egy int paraméterrel hivjuk meg
a konstruktort, akkor a _next-et alapértelmezetten nullpointernek veszi. Mint minden tagfiiggvény, ez a
konstruktor is hozzafér az adott struktira adattagjaihoz.

Azonban a strukturank miikodott eddig is, pedig nem irtunk konstruktort. Ha konstruktorra sziikség
van objektum létrehozashoz, akkor hogyan lehet ez? Ugy, hogy a fordit6 a hianyzo kulcsfontossagi fiigg-
vényeket legeneralja nekiink. Létrehoz (t6bbek kozott) egy un. default konstruktort, ha mi explicit



nem hoztunk létre konstruktort. A default konstruktor 0 paraméterrel meghivhat6. Fontos azonban, ha
mi irunk egy konstruktort, akkor a fordité6 mar nem fog generalni ilyet.

Igy a kovetkezoféleképpen tudunk egy List tipusi objektumot létrehozni:

List head(5); //ok, létrehoz egy 5 értékkel rendelkezd, 1 elemid listdt
List head2; //nem ok, mdr nincs paraméter nélkili konstruktor

Egy triikkel megoldhato, hogy tomorebb szintaxissal tudjuk inicializalni a listaelemeinket.

HList(int _data, List *_next = 0) : data(_data), next(_next) {}

A konstruktor fejléce utan (kett&sponttol kezdve) talalhatd egy un. inicializacios lista. Az iniciali-
zacios listaval rendelkezé konstruktor hasonld jelentéssel bir, mint a korabbi kéd, azonban inicializacios
lista hasznélata hatékonyabb.

Mire a konstruktor torzséhez ér a vezérlés, addigra az adattagokat inicializalni kell. A torzsben ezért
mar inicializalt értékeket irunk feliil, ami eréforras pazarlas. Primitiv tipusok esetén ez nem jelent prob-
lémat (mivel a fordito varhatoan kioptimalizalja), Osszetett tipusok esetén viszont szamottevs lehet.

S6t, mivel a referencidkat és konstansokat inicializalni kell, ezért ilyen adattagjaink csak akkor lehet-
nek, ha minden konstruktor inicializalja 6ket az inicializacios listajukban.

2.3.1. Megjegyzés. A konstruktor torzsében torténd értékadas két 1lépés (mivel el6tte egy alapértelme-
zett konstruktor mar inicializalta az objektumot), az inicializalas csak egy.

Fontos megjegyzés, hogy az a struktira elemei a mez6k definidlasanak a sorrendjében inicializalodnak.
Tehét, barmilyen sorrendben irjuk mi az inicializacios listat, mindig elGszor a data, és utana a next
keriil inicializalasra. Ennek az az oka, hogy konstruktorbol tobb is lehet, igy nem lenne egyértelmi az
inicializéacios sorrend, fiiggne attol, hogy mely konstruktort hivtuk meg. A mez&k sorrendje ezzel szemben
egyértelm.

Ennek tobbek k6zott ilyen kovetkezményei lehetnek:

struct Printer
{
Printer(int i) : x(i), y(x)
{
std::cout << y << << x << std::endl; // nem definidlt viselkedés
}
int y, x;
}s;
int main() { Printer a(5); }

Ekkor x-nek az értéke y inicializdlasakor még nem definialt, igy (lévén a sorrend miatt y-nak elgbb kell
értéket adni) y értéke is nem definialt lesz.

Elsfordulhat olyan, hogy szeretnénk létrehozni egy listat, de azt szeretnénk, hogy élettartama mennél
kisebb legyen. Ezt megtehetjiik példaul tgy, ha egy kiilon blokkban hozzuk létre.

void printFirstElement(const List &1) { std::cout << l.data << std::endl; }

int main
{
/7.
{
List 1(4);

printFirstElement (1) ;
} // 1 megsemmisil

/.

3

Ha csak egy kifejezésben van sziikségiink erre a listara, létrehozhatunk egy név nélkiili temporalis
valtozo6t. Ennek a létrehozasahoz elhagyjuk a valtozd nevét, és a tipus utdn egybdl a konstruktor para-
métereit adjuk meg.



List(4); //amint létrejon ez a wvdltozd, meg is fog semmisilnt.

/.

printFirstElement (List(4)); //a lista élettartama a figguényhivdstil a fiugg-vény futds
dnak végéig tart.

2.3.2. Megjegyzés. A literalok is név nélkiili temporalis értékek (bar nem valtozok). Ha pl. az £ fliggvény
egy darab int-et var paraméteriil, akkor £ (5) hivasakor 5 egy név nélkiili temporélis érték.

2.3.3. Megjegyzés. A temporalis valtozok jobb értékek, igy csak konstans referenciaval, vagy érték
szerint tudjuk Sket atvenni. Ha konstans referencidhoz kotjiik, akkor a valtozo élettartama kiterjesztésre
keriil, meg fog egyezni a referencia élettartaméval. Bar ezt a referenciat tudjuk cimképezni (azaz egy
balérték lesz), ne feledjiik, hogy ez a referencia csak hivatkozik egy jobbértékre, nem maga lesz az.

2.4. Destrukorok

Ahogy gondoskodtunk a listaelemek létrehozasarol, gondoskodhatnank annak megfelel6 megsemmisiilé-
sérdl is.
struct List
{
List(int _data, List *_next = 0) : data(_data), next(_next) {}
~List() // dtor
{

delete next;

}

int data;
List *next;

};

Az fenti tagfiiggvényt, melynél a hullamvonalat kozvetlentil a struktara neve koveti destruktornak (dest-
ruktor, roviden dtor) nevezziik. A destruktor mindig az objektum élettartamanak végén hivodik meg, és
gondoskodik a megfelel erforrasok felszabaditasarol.

A destruktort is rekurzivan irtuk meg: a next altal mutatott memoriateriilet felszabaditdsakor meg-
hivja List tipusd elem destruktorat. A lista végén a next egy nullpointer, azon a delete hivas nem csinal
semmit.

Teszteljiink!
int main()
{
List head(8);
add (&head, 7);
add(&head, 2);
}

Most ugy alakitottuk at a kddot, hogy amikor létrehozzuk a listat, akkor a fejelemet a stacken hozzuk
létre, melynek értéke 8, és a pointer része nullpointer. Késébb az add fiiggvénnyel 1étrehozunk a heapen
egy olyan listaelemet, mely 7-et tarol, és pointer része nullpointer, és az eredeti lista fejét raallitjuk erre.

Sikeresen elértiik, hogy a lista els6 eleme a stack-en, de minden mas eleme a heap-en legyen. Mivel
olyan struktrat irtunk, mely gondoskodik arr6l, hogy minden dinamikusan lefoglalt teriiletet felszabadit-
son, mindent csak egyszer t6rol, jo sorrendben, egy RAII (Resource acquisition is initialization) osztalyt
irtunk. Ez Bjarne-nek egy elég szerencsétleniil valasztott acronymje. A lényege, hogy az adott osztaly a
megfelels eréforrasokat lefoglalja maganak, majd a destruktor gondoskodik az eréforrasok felszabadita-
sarol. Minden er6forrast egy stack-en 1évé objektumhoz kétiink, mivel azok garantaltan automatikusan
fel fognak szabadulni, a destruktoruk le fog futni. Jelen esetben a lista fejeleme, ami a stack-en van,
felel6s azért, hogy a heap-re allokalt listaclemek felszabaduljanak a program futasanak a végeztével. Igy
a felhasznalonak mar a free hivasra sem kell figyelnie.

Bjarne hires mondéasa, hogy a C-+- szemétgyiijtéssel rendelkezd nyelv, mert nem general szemetet. A
jol megirt objektumok mindig eltakaritanak maguk utén.



A konstruktor/destruktor hasznéalata ugyanolyan hatékony, mintha kézzel kezeltiik volna a memoriat.
Csinaljunk az add fiiggvénybdl tagfiiggvényt!

struct List

{
void add(int data) //eltint egy paraméter!
{
if (next == 0)
{
next = new List(data);
}
else
{
next->add(data) ;
}
}
/7.
};
int main()
{
List head(8);
head.add(7);
head.add(2);
}

A nyelv egyik szépsége, hogy a felhasznalonak nem kell tudnia, hogy hogyan reprezentaltuk a listat. A
listat az a felhasznalo is tudja hasznélni, aki nem ismeri a heap-et, nem hallott még soha lancolt adat-

szerkezetekrsl. A késGbbiekben a lista prerezentéacioja kicserélhets akar egy vektor szerii adatszerkezetre
anélkiil, hogy a felhasznal6i kodot modositani kellene.

2.5. Masolo konstruktor

A fordit6 sok kodot general a structunkba: konstruktoron és destruktoron kiviill még méasolé konst-
ruktort (copy constructor) is. A masolo konstruktor egy olyan konstrukor, melynek egyetlen paramétere
egy azonos tipusu objektum. Ez alapértelmezetten minden adattagot lemasol az adott adattag mésold
konstruktora segitségével. Primitiv tipusoknal ez bitrél bitre mésolast jelent. Mi ennek a kévetkezménye 7

int main()

{
List head(8);
head.add(7);
head.add(2);
{
List cHead = head; //mdsolé konstruktor hivdsa
} //itt lefut cHead destruktora
}

Fentebb létrehoztunk egy 1j listat head mintajara. A masolatnak a destruktora hamarabb lefut. Ha sa-
nitizerrel forditunk, futaskor hibaiizenetet kapunk: felszabaditott memoriateriiletet szeretnénk hasznélni.
Ennek az az oka, hogy a cHead-ben 1év6 pointer ugyanarra a listara fog mutatni (1évén a bitrdl bit-
re torténd masolas tortént a pointernél). A cHead megsemmisiilése utan a head destruktora megprobal
beleolvasni a mar felszabaditott memoriateriiletbe.

A megoldas egy sajat mésolo konstruktor bevezetése!

struct List

{
List(const List &other) : data(other.data), next(0)

{



cHead (8) —
//’
head (8)

4. dbra. A lista mésolésa default méasol6é konstruktorral. Zarojelben a lista els§ elemének data
adattagjanak értéke.

if (other.next != 0)

{
next = new List(*other.next);
}
}
/7.
}s
int main()
{
List head(8);
head.add(7);
head.add(2);
{
List cHead = head;
}
}

Mint a korabbi fiiggvényeink, ez is rekurziv: a new List(*other.next) Ujra meghivja a copy konstruk-

tort, ha az other.next nem nullpointer.

cHead (8) 7 r ’
—/____/-)

head (8)

5. dbra. A lista mésolasa az altalunk implementalt méasold konstruktorral.

Ezzel meg is oldottuk a problémat.
Figyelem, ez egy copy konstruktor, nem értékadas operator! Itt a cHead még nincs létrehozva,

amikor head-el inicializaljuk. Ha az egyenlGségjel bal oldalan 1év6 objektum még nem jott 1étre, mint
itt, akor a copy konstruktor hivas torténik. Ellenkezs esetben értékadas operator.

List cHead = head; //copy ctor

List cHead;
cHead = head; //értekadds

10



	A C++ memóriamodellje
	Stack
	Globális/statikus tárhely
	Heap/Free store

	Osztályok felépítése
	Struct-ok
	Osztályra statikus változók
	Konstruktorok
	Destrukorok
	Másoló konstruktor


