
C++
Gyakorlat jegyzet

5. óra

A jegyzetet Umann Kristóf készítette Horváth Gábor gyakorlata alapján. (2018. április 30.)

1. A C++ memóriamodellje
A C++ szabvány több memóriatípust különít el. Ezek közül elsősorban a stack-et használtuk eddig.

Stack
Globális/Statikus Heap/Free store

1.1. Stack
A második gyakorlaton már volt szó részletesebben a stack működéséről. Jusson eszünkbe egy nagyon
fontos tulajdonsága: a blockok végén a változók automatikusan megsemmisülnek. Ebben az esetben nem
a programozó feladata a memória felszabadítása.

A stack-en létrehozott változókat szokás automatikus változóknak (automatic variable) is hívni.
Tekintsük a második gyakorlatról már ismerős kódrészletet.

#include <iostream>

int f()
{

int x = 0;
++x;
return x;

}

int main()
{
for(int i = 0; i < 5; ++i)

std::cout << f() << std::endl;
}

Kimenet: 1 1 1 1 1

A stacken lérehozott változók kezelése nagyon kényelmes, mert jól látható, mikor jönnek jönnek létre,
mikor semmisülnek meg. Azonban előfordulhat, hogy nem szeretnénk, hogy az x változó élettartama
megszűnjön a block végén. Ilyenkor egy lehetőség a statikus változók használata.

1.2. Globális/statikus tárhely
Írjuk át a fenti f függvényt, hogy x ne automatikus, hanem statikus változó (static variable) legyen!

int f()
{

static int x = 0;
++x;
return x;

}

int main() {/*...*/}

1



Kimenet: 1 2 3 4 5
Ebben az esetben azonban a függvény első hivásától a program futásának végéig benne marad a

memóriában az x, így mindig egyre nagyobb számokat ad majd f() vissza. Az x inicializációja egyszer
történik meg, a függvény első hívásakor.

1.2.1. Megjegyzés. Nem szeretjük a static változókat. Például a több szálú programok esetén külö-
nösen kerülendő ez a programozási stílus.

A globális változók és a statikus változók a memória ugyanazon területén jönnek létre. Ezért hívjuk
ezt a területet globális/statikus tárhelynek.

Amennyiben azt szeretnénk, hogy x ne semmisüljön meg a block végén, de ne is maradjon a program
futásának a végéig a memóriában, arra is van lehetőség. Ebben az esetben viszont a programozó felel a
memória kezeléséért.

1.3. Heap/Free store
A heapen létrehzoott változókat dinamikus változóknak (dynamic variable) is szokás szokás hívni. A
heap segítségével nagy szabadságra tehetünk szert, azonban ez a szabadság nagy felelősséggel is jár.

int main()
{

int *p = new int(2);
delete p;

}

Fentebb láthatjuk hogyan lehet egy intnek lefoglalni helyet a heapen. Fontos, hogy a stack-et nem kerültük
meg, mert szükségünk van egy pointerre, mely a heap-en lefoglalt címre mutat (p).

A mutató által mutatott területet a delete operátorral tudjuk felszabadítani.

2

p

1. ábra. Példa a heap működésére: p egy, a heapen lefoglalt memóriacímre mutat.

A heapen nincs a lefoglalt területnek nevük, így mindig szükségünk lesz egy mutatóra, hogy tudjunk
rá hivatkozni. Ha egyszer lefoglalunk valamit a heap-en, gondoskodni kell arról, hogy felsza-
badítsuk. Az egyik leggyakoribb hiba a dinamikus memóriakezelésnél, ha a memóriát nem szabadítjuk
fel. Ilyenkor a lefoglalt memóriaterületre hivatkozni már nem tudunk de lefoglalva marad: elszivárog
(memory leak).

Bár az operációs rendszer megpróbál minden, a program által lefoglalt memóriát felszabadítani a futás
befejeztével, de nem mindenható. Előfordulhat, hogy egyes platformokon újraindításig nem szabadul fel
a memória. Emellett ameddig a program fut, több memóriát fog használni, mint amennyire szüksége van.
Ez növelheti a szerverpark költségeit vagy ronthatja a felhasználói élményt.

A dinamikusan lefoglalt memória szabályos felszabadítását számos dolog nehezíti. Fényes példa erre
a kivételkezelés, melynél hamarabb megszakadhat a függvény végrehajtása mintsem, hogy felszabadítson
minden memóriát. Előfordulhat, hogy egy memóriaterületet kétszer szabadítunk fel, ami nem definiált
viselkedés.

Előfordulhat, hogy egy már felszabadított memóriaterületre akarunk írni vagy onnan olvasni. Sajnos
ilyen jellegű hibát könnyű véteni, hisz a delete a p által mutatott memóriaterületet, nem a p-t fogja
törölni. A p továbbra is használható.

1.3.1. Megjegyzés. A nullpointer törlésekor nem történik semmi (no-op).

2



1.3.2. Megjegyzés. Amint elvesztettük az utolsó mutatót, ami egy adott lefoglalt memóriacímre mutat,
az garantáltan elszivárgott memória. A szabvány nem foglal magában semmilyen lehetőséget ezeknek a
visszaszerzésére.

Láthatjuk, hogy a heap használata hibalehetőségekkel teli, ráadásul az allokálás (memória lefoglalás)
még lassabb is, mintha a stack-et használnánk. De miért használjuk mégis? Ha meg lehet oldani, hogy
a stack-en tudjunk tárolni valamit, tegyük azt. A stacken azonban véges, hamar be tud telni (stack
overflow), illetve kötött a változók élettartama. A heap-en e téren sokkal nagyobb a szabadságunk.

2. Osztályok felépítése
A következő pár gyakorlaton egy láncolt listát fogunk implementálni, mely jól demonstrálja majd a
dinamikus memóriakezelés veszélyeit is.

A láncolt lista nevéből eredendően nem tömbszerűen (egymás melletti memóriacímeken) tárolja az
objektumokat, hanem egymástól független memóriacímeken. Ezt úgy oldja meg, hogy minden adathoz
rendel egy pointert is, mellyel a következő listalemet el lehet érni. A lista utolsó elemében a pointer a
rákövetkező elem memóriacíme helyett nulpointer értéket vesz fel.

data *next

9 16 4 1 /

2. ábra. A fenti képen egy listaelem, a lentin egy adatként int-et tároló 4 elemű láncolt lista. Figyeljük
meg, hogy az utolsó elem pointere nullpointer.

2.1. Struct-ok
Egy láncolt lista elemét implementálhatjuk pl. így:

struct List
{

int data;
List *next;

};

Alkalmazzuk is ezt úgy, hogy a listaelemek dinamikusan legyen eltárolva!

int main()
{

List *head = new List;
head->data = 8; //(*head).data == head->data
head->next = new List;

head->next->data = 7;
head->next->next = new List;

head->next->next->data = 2;
head->next->next->next = NULL;

delete head;
delete head->next;
delete head->next->next;

}

Ezen a ponton mondhatnánk, hogy készen vagyunk, hisz List használható láncolt listaként (bár valójában
igen kényelmetlen).

Sajnos a törlést rossz: először törljük a fejelemet (mely az első elemre mutat), viszont az első elem
segítségével tudnánk a többi elemet elérni, így mikor a második listaelemet törölnénk, head már egy

3



7

2

8

3. ábra. Láncolt lista. Az első elem stacken, a többi heapen van tárolva.

felszabadított memóriaterületre mutat. Ezt törlés utáni használatnak (use after delete) szokás nevezni és
nem definiált viselkedés.

A megoldás:

delete head->next->next;
delete head->next;
delete head;

2.1.1. Megjegyzés. A heap-en arra is figyelni kell, hogy jó sorrendben szabadítsuk fel a memóriát.
Ha rossz sorrendben szabadítjuk fel az objektumokat, könnyen a fentihez hasonló hibát vagy memória
szívárgást okozhatunk.

A változók a stacken a létrehozás sorrendjéhez képest fordított sorrendben semmisülnek meg, pont emiatt.

Ez a „láncolt lista” eddig elég szegényes. A fő gond az, hogy nagyon sokat kell írni a használatához.
Ez sért egy programozási elvet, a DRY-t: Dont Repeat Yourself. Itt sokszor írjuk le közel ugyanazt – erre
kell, hogy legyen egy egyszerűbb megoldás. Írjunk függvényt az új listaelem létrehozásához!

List *add(List *head, int data)
{

if (head == 0)
{

List *ret = new List;
ret->data = data;
ret->next = 0;
return ret;

}
head->next = add(head->next, data);
return head;

}

Ez egy olyan rekurzív függvény, mely addig hívja saját magát, míg a paraméterként kapott lista végére
nem ér (azaz a head egy nullpointer). Amikor oda elér, létrehoz egy új listaelemet és azt visszaadja. A
rekurzió felszálló ágában a lista megfelelő elemeit összekapcsolja.

Írjunk egy függvényt a lista által birtokolt memória felszabadítására is.

void free(List *head)
{

if (head == 0)
return;

free(head->next);
delete head;

}

Itt a rekurzió szintén a lista végéig megy. A rekurzió felszálló ágában történik a listaelemek felszabadítása.
Ennek az oka, hogy a felszabadítás a megfelelő sorrendben történjen meg.

2.1.2. Megjegyzés. A rekurzív függvények nem olyan hatékonyak, mint az iterativ (pl. for vagy while
ciklus) társaik. Továbbá a sok függvényhívás könnyen stack overflow-hoz vezetnek. Azonban jó agytornák,
és segíthetnek az alapötletben. Egy rekurzív függvényt mindig át lehet írni iteratívvá.

4



Beszéljünk arról, mennyi a teher a felhasználón. Eddig tudnia kellett, milyen sorrendben kell felsza-
badítani az elemeket a listán belüle, de most már elég arra figylenie, hog lista használata után meghívja
a free függvényt. A felhasználó így kisebb eséllyel követ el hibát, több energiája marad arra, hogy az
előtte álló problémát megoldja. Legyenek a függvényeink és osztályaink olyanok, hogy könnyű legyen
őket jól használni, és nehéz legyen rosszul.

2.2. Osztályra statikus változók
Teszteljünk!

int main()
{

List *head = 0;
head = add(head, 8);
head = add(head, 7);
head = add(head, 2);

free(head);
}

A program lefordult, és a gyakorlaton tökéletesen le is futott. Azonban, ha történt memory leak vagy
double free, esetleg use after free, az nem definiált viselkedés. Ezért nem lehetünk benne biztosak, hogy
valóban nem történt memóriakezeléssel kapcsolatos hiba. A sanitizerek segítségével megyőződhetünk róla,
hogy nem követtünk el ilyen jellegű hibát.

Az osztályon belül statikusként deklarált változókat osztályszintű változóknak is hívjuk, ugyanis min-
den, az osztályhoz tartozó objektum ugyanazon a statikus változón „osztozkodik”. Ha az egyiken keresztül
azt a változót módosítjuk, a többiben módosulni fog. Élettartamuk és láthatóságuk a program elejétől
végéig tart.

Hozzunk létre List-ben egy számlálót, ami számon tartja mennyi objektumot hoztunk belőle létre,
és semmisítettünk meg! Ezzek a trükkel megnézhetjük, hogy elfelejtettünk-e felszabadítani listaelemet.

struct List
{

int data;
List *next;

static int count; // !
};

int List::count = 0;

List *add(List *head, int data)
{

if (head == 0)
{

List *ret = new List;
List::count++; // !
ret->data = data;
ret->next = 0;
return ret;

}
head->next = add(head->next, data);
return head;

}

void free(List *head)
{

if (head == 0)
return;

5



free(head->next);
List::count--; // !
delete head;

}

int main()
{

List *head = 0;
head = add(head, 8);
head = add(head, 7);
head = add(head, 2);

free(head);
std::cout << List::count; // !

}

Osztályszintű változókat csak osztályon kívül tudunk definiálni (ezek alól kivételt képeznek az osz-
tályszintű konstans változók), ezért látható az osztály után a következő sor:

int List::count = 0;

Ezzel a kis módosítással meg is kapjuk a kívánt kimenetet: 0. Ez alapján tudhatjuk, hogy minden
objektum törlésre került.

2.2.1. Megjegyzés. A fenti módosítások csak gyakorlás célját képezték, az elkészítedő listának nem
része a számláló.

Ha azonban egy elemet kétszer töröltünk, egyet meg elszivárogtattunk, az nem feltétlen nem derül ki.
Ilyenkos a sanitizerek segíthetnek:

g++ list.cpp -fsanitize=address -g

A sanitizerekről bővebben lásd a 3. gyakorlat anyagát. Határozott előrelépést értünk el, de van még hova

fejleszteni a listánkat. Szerencsére nem csak adattagokat, de tagfüggvényeket is tudunk struct-okba írni.

2.3. Konstruktorok
Kényelmesebbé tehetjük az életünket, ha írunk egy tagfüggvényt, mellyel kényelmesebben tudjuk létre-
hozni a listaelemeket:

struct List
{

//tagfüggvények
List(int _data, List *_next = NULL)
{

data = _data;
next = _next;

}

//adattagok
int data;
List *next;

};

A fenti tagfüggvényt, vagy metódust konstruktornak (constructor, vagy röviden ctor) hívjuk. A konst-
ruktorok hozzák létre az objektumokat; vannak paraméterei, és nincs visszatérési értéke. A fenti konrt-
ruktor még egy alapértelmezett paraméterrel is rendelkezik - ha mi csak egy int paraméterrel hívjuk meg
a konstruktort, akkor a _next-et alapértelmezetten nullpointernek veszi. Mint minden tagfüggvény, ez a
konstruktor is hozzáfér az adott struktúra adattagjaihoz.

Azonban a struktúránk működött eddig is, pedig nem írtunk konstruktort. Ha konstruktorra szükség
van objektum létrehozáshoz, akkor hogyan lehet ez? Úgy, hogy a fordító a hiányzó kulcsfontosságú függ-
vényeket legenerálja nekünk. Létrehoz (többek között) egy un. default konstruktort, ha mi explicit

6



nem hoztunk létre konstruktort. A default konstruktor 0 paraméterrel meghívható. Fontos azonban, ha
mi írunk egy konstruktort, akkor a fordító már nem fog generálni ilyet.

Így a következőféleképpen tudunk egy List típusú objektumot létrehozni:

List head(5); //ok, létrehoz egy 5 értékkel rendelkező, 1 elemű listát
List head2; //nem ok, már nincs paraméter nélküli konstruktor

Egy trükkel megoldható, hogy tömörebb szintaxissal tudjuk inicializálni a listaelemeinket.

List(int _data, List *_next = 0) : data(_data), next(_next) {}

A konstruktor fejléce után (kettősponttól kezdve) található egy un. inicializációs lista. Az iniciali-
zációs listával rendelkező konstruktor hasonló jelentéssel bír, mint a korábbi kód, azonban inicializációs
lista használata hatékonyabb.

Mire a konstruktor törzséhez ér a vezérlés, addigra az adattagokat inicializálni kell. A törzsben ezért
már inicializált értékeket írunk felül, ami erőforrás pazarlás. Primitív típusok esetén ez nem jelent prob-
lémát (mivel a fordító várhatóan kioptimalizálja), összetett típusok esetén viszont számottevő lehet.

Sőt, mivel a referenciákat és konstansokat inicializálni kell, ezért ilyen adattagjaink csak akkor lehet-
nek, ha minden konstruktor inicializálja őket az inicializációs listájukban.

2.3.1. Megjegyzés. A konstruktor törzsében történő értékadás két lépés (mivel előtte egy alapértelme-
zett konstruktor már inicializálta az objektumot), az inicializálás csak egy.

Fontos megjegyzés, hogy az a struktúra elemei a mezők definiálásának a sorrendjében inicializálódnak.
Tehát, bármilyen sorrendben írjuk mi az inicializációs listát, mindig először a data, és utána a next
kerül inicializálásra. Ennek az az oka, hogy konstruktorból több is lehet, így nem lenne egyértelmű az
inicializációs sorrend, függne attól, hogy mely konstruktort hívtuk meg. A mezők sorrendje ezzel szemben
egyértelmű.

Ennek többek között ilyen következményei lehetnek:

struct Printer
{

Printer(int i) : x(i), y(x)
{

std::cout << y << " " << x << std::endl; // nem definiált viselkedés
}
int y, x;

};

int main() { Printer a(5); }

Ekkor x-nek az értéke y inicializálásakor még nem definiált, így (lévén a sorrend miatt y-nak előbb kell
értéket adni) y értéke is nem definiált lesz.

Előfordulhat olyan, hogy szeretnénk létrehozni egy listát, de azt szeretnénk, hogy élettartama mennél
kisebb legyen. Ezt megtehetjük például úgy, ha egy külön blokkban hozzuk létre.

void printFirstElement(const List &l) { std::cout << l.data << std::endl; }

int main
{

//...
{

List l(4);
printFirstElement(l);

} // l megsemmisül
//...

}

Ha csak egy kifejezésben van szükségünk erre a listára, létrehozhatunk egy név nélküli temporális
változót. Ennek a létrehozásához elhagyjuk a változó nevét, és a típus után egyből a konstruktor para-
métereit adjuk meg.

7



List(4); //amint létrejön ez a változó, meg is fog semmisülni.
//...
printFirstElement(List(4)); //a lista élettartama a függvényhívástól a függ-vény futás

ának végéig tart.

2.3.2. Megjegyzés. A literálok is név nélküli temporális értékek (bár nem változók). Ha pl. az f függvény
egy darab int-et vár paraméterül, akkor f(5) hívásakor 5 egy név nélküli temporális érték.

2.3.3. Megjegyzés. A temporális változók jobb értékek, így csak konstans referenciával, vagy érték
szerint tudjuk őket átvenni. Ha konstans referenciához kötjük, akkor a változó élettartama kiterjesztésre
kerül, meg fog egyezni a referencia élettartamával. Bár ezt a referenciát tudjuk címképezni (azaz egy
balérték lesz), ne feledjük, hogy ez a referencia csak hivatkozik egy jobbértékre, nem maga lesz az.

2.4. Destrukorok
Ahogy gondoskodtunk a listaelemek létrehozásáról, gondoskodhatnánk annak megfelelő megsemmisülé-
séről is.

struct List
{

List(int _data, List *_next = 0) : data(_data), next(_next) {}
∼List() // dtor
{

delete next;
}

int data;
List *next;

};

Az fenti tagfüggvényt, melynél a hullámvonalat közvetlenül a struktúra neve követi destruktornak (dest-
ruktor, röviden dtor) nevezzük. A destruktor mindig az objektum élettartamának végén hívódik meg, és
gondoskodik a megfelelő erőforrások felszabadításáról.

A destruktort is rekurzívan írtuk meg: a next által mutatott memóriaterület felszabadításakor meg-
hívja List típusú elem destruktorát. A lista végén a next egy nullpointer, azon a delete hívás nem csinál
semmit.

Teszteljünk!

int main()
{

List head(8);
add(&head, 7);
add(&head, 2);

}

Most úgy alakítottuk át a kódot, hogy amikor létrehozzuk a listát, akkor a fejelemet a stacken hozzuk
létre, melynek értéke 8, és a pointer része nullpointer. Később az add függvénnyel létrehozunk a heapen
egy olyan listaelemet, mely 7-et tárol, és pointer része nullpointer, és az eredeti lista fejét ráállítjuk erre.

Sikeresen elértük, hogy a lista első eleme a stack-en, de minden más eleme a heap-en legyen. Mivel
olyan struktrát írtunk, mely gondoskodik arról, hogy minden dinamikusan lefoglalt területet felszabadít-
son, mindent csak egyszer töröl, jó sorrendben, egy RAII (Resource acquisition is initialization) osztályt
írtunk. Ez Bjarne-nek egy elég szerencsétlenül választott acronymje. A lényege, hogy az adott osztály a
megfelelő erőforrásokat lefoglalja magának, majd a destruktor gondoskodik az erőforrások felszabadítá-
sáról. Minden erőforrást egy stack-en lévő objektumhoz kötünk, mivel azok garantáltan automatikusan
fel fognak szabadulni, a destruktoruk le fog futni. Jelen esetben a lista fejeleme, ami a stack-en van,
felelős azért, hogy a heap-re allokált listaelemek felszabaduljanak a program futásának a végeztével. Így
a felhasználónak már a free hívásra sem kell figyelnie.

Bjarne híres mondása, hogy a C++ szemétgyüjtéssel rendelkező nyelv, mert nem generál szemetet. A
jól megírt objektumok mindig eltakarítanak maguk után.

8



A konstruktor/destruktor használata ugyanolyan hatékony, mintha kézzel kezeltük volna a memóriát.

Csináljunk az add függvényből tagfüggvényt!

struct List
{

void add(int data) //eltűnt egy paraméter!
{

if (next == 0)
{

next = new List(data);
}
else
{

next->add(data);
}

}
//...

};

int main()
{

List head(8);
head.add(7);
head.add(2);

}

A nyelv egyik szépsége, hogy a felhasználónak nem kell tudnia, hogy hogyan reprezentáltuk a listát. A
listát az a felhasználó is tudja használni, aki nem ismeri a heap-et, nem hallott még soha láncolt adat-
szerkezetekről. A későbbiekben a lista prerezentációja kicserélhető akár egy vektor szerű adatszerkezetre
anélkül, hogy a felhasználói kódot módosítani kellene.

2.5. Másoló konstruktor
A fordító sok kódot generál a structunkba: konstruktoron és destruktoron kívül még másoló konst-
ruktort (copy constructor) is. A másoló konstruktor egy olyan konstrukor, melynek egyetlen paramétere
egy azonos típusú objektum. Ez alapértelmezetten minden adattagot lemásol az adott adattag másoló
konstruktora segítségével. Primitív típusoknál ez bitről bitre másolást jelent. Mi ennek a következménye?

int main()
{

List head(8);
head.add(7);
head.add(2);
{

List cHead = head; //másoló konstruktor hívása
} //itt lefut cHead destruktora

}

Fentebb létrehoztunk egy új listát head mintájára. A másolatnak a destruktora hamarabb lefut. Ha sa-
nitizerrel fordítunk, futáskor hibaüzenetet kapunk: felszabadított memóriaterületet szeretnénk használni.
Ennek az az oka, hogy a cHead-ben lévő pointer ugyanarra a listára fog mutatni (lévén a bitről bit-
re történő másolás történt a pointernél). A cHead megsemmisülése után a head destruktora megpróbál
beleolvasni a már felszabadított memóriaterületbe.

A megoldás egy saját másoló konstruktor bevezetése!

struct List
{

List(const List &other) : data(other.data), next(0)
{

9



7

2

cHead (8)

head (8)

4. ábra. A lista másolása default másoló konstruktorral. Zárójelben a lista első elemének data
adattagjának értéke.

if (other.next != 0)
{

next = new List(*other.next);
}

}
//...

};

int main()
{

List head(8);
head.add(7);
head.add(2);
{

List cHead = head;
}

}

Mint a korábbi függvényeink, ez is rekurzív: a new List(*other.next) újra meghívja a copy konstruk-
tort, ha az other.next nem nullpointer.

7
2

7
2

cHead (8)

head (8)

5. ábra. A lista másolása az általunk implementált másoló konstruktorral.

Ezzel meg is oldottuk a problémát.
Figyelem, ez egy copy konstruktor, nem értékadás operátor! Itt a cHead még nincs létrehozva,

amikor head-el inicializáljuk. Ha az egyenlőségjel bal oldalán lévő objektum még nem jött létre, mint
itt, akor a copy konstruktor hívás történik. Ellenkező esetben értékadás operátor.

List cHead = head; //copy ctor

List cHead;
cHead = head; //értekadás

10


	A C++ memóriamodellje
	Stack
	Globális/statikus tárhely
	Heap/Free store

	Osztályok felépítése
	Struct-ok
	Osztályra statikus változók
	Konstruktorok
	Destrukorok
	Másoló konstruktor


