
C++
Gyakorlat jegyzet

8. óra

A jegyzetet Umann Kristóf készítette Horváth Gábor gyakorlata alapján. (2018. április 30.)

1. Template

1.1. Függvény template-ek
Térjünk vissza a régebben megírt swap függvényünkhöz.

void swap(int &a, int &b)
{

int tmp = a;
a = b;
b = tmp;

}

Ahogy azt láttuk, túl tudjuk terhelni ezt a függvényt, hogy más típusú objektumokat is meg tudjunk
cserélni. Azonban gyorsan megállapítható, hogy állandóan egy újabb overloadot létrehozni nem épp ide-
ális megoldás. Ez a kisebb gond, a nagyobb az, hogy a kódismétlés áldozatai leszünk: ha bármi miatt
megváltozna a swap belső implementációja (pl. találunk hatékonyabb megoldást), az összes létező swap
függvényben meg kéne ejteni a változtatást. E probléma elkerülésére egy megoldás lehet, ha létrehozunk
egy sablont, melynek mintájára a fordító maga tud generálni egy megfelelő függvényt.

template <typename T>
void swap(T &a, T &b)
{

T tmp = a;
a = b;
b = tmp;

}

Az így implementált swap függvény egy template, és a template paramétere (T) egy típus. Ez alapján a
fordító már létre tud hozni hozni megfelelő függvényeket:

int main()
{

int a = 2, b = 3;
swap<int>(a, b);

double c = 1.3, d = 7.8;
swap<double>(c, d);

}

A fordítónak csak annyi dolga van, hogy minden T-t lecseréljen int-re, és már kész is a függvény. A fenti
példában mi explicit megmondtuk a fordítónak, hogy swap-ot milyen template paraméterrel példányosítsa
(instantiate), azonban függvényeknél erre nem feltétlenül van szükség: a fordító tudja a és b típusát, így
ki tudja találni hogy mit kell behelyettesítenie.

int main()
{

int a = 2, b = 3;
swap(a, b);

double c = 1.3, d = 7.8;
swap(c, d);

}

Ezt a folyamatot (amikor a fordító kitalálja a tempalte paramétert) template paraméter dedukciónak
(template parameter deduction) hívjuk.

1



1.1.1. Megjegyzés. Természetesen a példányosítás jóval bonyolultabb annál, hogy a a fordító minden
T-t egy konkrét típusra cserél, de ebben a könyvben az egyszerűség kedvéért elégedjünk meg ennyivel.

Nem csak típus lehet template paraméter – bármi ami nem karakterlánc literál vagy lebegőpontos
szám.

1.1.2. Megjegyzés. A lebegőpontos számokra vonatkozó indoklást később a template specializációknál
lesz leírva, de a karakterlánc literálokra már most adhatunk választ.

Mivel a C++ban van lehetőség függvénytúlterhelésre, ezért a fordító fordítás közben nem csak a
függvény nevét, de annak paraméterlistáját, visszatérési értékét és a template paraméterekre vonatkozó
információkat (stb.) is kénytelen eltárolni a függvény nevével együtt. Amennyiben karakterlánc literál is
lehetne template paraméter, nagyon meg tudna nőni ennek a sztringnek a hossza, és lassíthatná a fordítási
időt.

template <typename T, int ArraySize>
int arraySize(const T (&array)[ArraySize])
{

return ArraySize;
}

int main()
{

int i[10];
std::cout << arraySize(i) << std::endl; //10

}

A fenti kód a 3. gyakorlat végén tett megjegyzésből lehet ismerős. Jól demonstrálja a template paraméter
dedukciót.

1.2. Osztály template-ek
Nem csak függvények, osztályok is lehetnek template-ek melyen nagyon hasonlóan működnek. A következő
kódrészletekben a template osztályok mellett megismerkedhetünk még a template-ek „lustaságával” is.

#include <iostream>

template <typename T>
struct X
{

void f()
{

T t;
t.foo();

}
};
struct Y
{

void bar() {}
};
int main() {}

Ez a kód úgy tűnhet, hogy nem fog lefordulni, lévén mi soha semmilyen foo tagfüggvényt nem írtunk,
azonban mégis le fog. Ez azért van, mert a template osztályok (és függvények) csak sablonok, amiből
aminek alapján a fordító generálhat egy konkrét osztályt (vagy függvényt), és mivel sose példányosítottuk,
fordítás után az X template osztály nem fog szerepelni a kódban. Szintaktikus ellenőrzést végez a fordító,
(pl. zárójelek be vannak-e zárva, pontosvessző nem hiányzik-e stb.), de azt, hogy van-e olyan T típus, ami
rendelkezik foo() függvénnyel, már nem.

Példányosítsuk az X osztályt Y-nal !

2



int main()
{

X<Y> x;
}

Ekkor már azt várnánk hogy fordítási hibát dobjon a fordító, hisz Y-nak nincs foo() metódusa, azonban
mégis gond nélkül lefordul, mivel az f() tagfüggvényt nem hívtuk meg, így nem is példányosult az
osztályon belül.

int main()
{

X<Y> x;
x.f();

}

Itt már végre kapunk fordítási hibát, mert példányosul f(). Ez jól mutatja, hogy a template-ek lusták,
és csak akkor példányosulnak, ha „nagyon muszáj”.

A template-eknek adhatunk meg alapértelmezett értéket.

template <typename T = void> //alapértelmezett paraméter
struct X {/* ... */};

struct Y {/* ... */};

int main()
{

X<Y> x;
X<> x2;

}

Ilyenkor nem szükséges megadni template paramétert (mely esetben értelemszerűen X<> == X<void>).
Ahogyan az említve volt korábban, szinte bármi lehet template paraméter, akár egy másik template

is.

template <typename T>
struct X {/* ... */};

struct Y {/* ... */};

template <template <typename> class Templ>
struct Z
{

Templ<int> t;
};

int main()
{

Z<X> z;
}

Fent Templ egy olyan template, aminek a template paramétere egy típus. Így Z-nek a template para-
métere egy olyan template, aminek a template paramétere egy típus. Mivel X egy template (és template
paramétere egy típus), így megadható Z-nek template paraméterként.

1.2.1. Megjegyzés. Fent a template paraméter listában typename helyett class szerepel. Ezek gyakor-
latilag ekvivalensek, mind a kettő azt jelenti, hogy az adott paraméter típus (bár a typename beszédesebb).

A fenti példákban mindig egy default konstruktort hívtunk meg, amikor objektumokat hoztunk létre.
Helyes lenne-e az, ha explicit módon kíírnánk a zárójeleket (hangsúlyozva a default konstruktor hívást)?

3



int main()
{

X<Y> x();
X<> y2();
Z<X> z();

}

A kód helyesen lefordul, de a jelentése nem ugyanaz, mintha nem lenne ott a zárójel. Mivel a c++
nyelvtana nem egyértelmű, más kontextusban ugyanaz a kódrészlet mást jelenthet (egyik legegyszerűbb
példa a static kulcsszó), így meg kellett alkotni egy olyan szabályt, miszerint amit deklarációként lehet
értelmezni, azt deklarációként kell értelmezni. Igy ezek függvénydeklarációk lesznek: Az első esetben
például egy olyan függvényt deklarálunk, melynek neve x, X<Y>-al tér vissza és nem vár paramétert.

Így ha default konstruktort szeretnék meghívni, semmilyen zárójelt nem szabad használni.

1.2.2. Megjegyzés. C++11ben lehet gömbölyű zárójel helyett helyett kapcsos zárójelet alkalmazni
konstruktorhívásnál, így ez a probléma nem fordulhat elő. pl : X<Y> x{};

A template-ek paramérének ismertnek kell lennie fordítási időben.

template <int N>
void f() {}

int main()
{

int n;
std::cin >> n;
f<n>(); //hiba, n nem ismert fordítási időben

}

Ez nyilvánvaló, hisz a template-eknek az a funkciója, hogy a fordító generáljon belőlük példányokat, és a
fordítási idő végeztével erre nincs lehetőség.

1.2.3. Megjegyzés. Fontos még, hogy a template-ek nagyon megnövelik a fordítási időt, így nem mindig
éri meg egy olyan függvényt is template-ként megírni, melyet nem feltétlenül muszáj.

1.3. Template specializáció
Néha szeretnénk, hogy bizonyos speciális behelyettesítéseknél más legyen az implementáció mint az alap
sablonban. Ilyenkor szokás specializációkat (template specialization) létrehozni:

template <class T>
struct A
{

A() { std::cout << "general A" << std::endl; }
};

template <> //template specializáció
struct A<int>
{

A() { std::cout << "special A" << std::endl; }
};

template <class T>
void f() { std::cout << "general f" << std::endl; }

template<> //template specializáció
void f<int>() { std::cout << "special f" << std::endl; }

int main()
{

A<std::string> a1; //general A

4



f<std::string>(); //general f
A<int> a2; //special A
f<int>(); //special f

}

Mind A osztályhoz, mind f függvényhez létrehoztunk egy specializációt arra az esetre, ha a template pa-
raméterként int-et kapnak. Számos okunk lehet arra hogy ezt tegyük: a standard könyvtár megfényesebb
példája az std::vector osztály, mely egy template, és van template specializációja bool esetre.

1.3.1. Megjegyzés. Az std::vector<bool> számos optimalizációkat tartalmazhat (persze nem feltét-
lenül, hisz ez implementáció függő): általában nem bool-okban tárolja az adatokat, hanem bitekben.
Sajnos azonban ez hátrányokkal is jár, például hogy a [] operátor érték és nem referencia szerint ad
vissza.

1.3.2. Megjegyzés. Visszatérve egy korábbi állításhoz, miért nem lehet lebegőpontos szám template
paraméter? Lévén két lebegőpontos szám könnyedén lehet csak nagyon kis mértékben eltérő, ezért könnyű
egy ilyesmi hibába belefutni :

Legyen adott d1, d2, fordítási időben ismert lebegőpontos szám! Mi azt hisszük, hogy ez a kettő
egyenlő, de mivel számos módosításon mentek keresztül, minimális mértékben, de nem lesznek egyenlőek.
Ilyenkor ha egy template paraméterként lebegőpontos számot váró függvénynek megadnánk őket template
paraméterül, kétszer kéne példányosítani az adott függvényt.

Ez a kisebb gond, de mi van ha pont erre az értékre mi létrehoztunk egy template specializációt,
és csak (pl.) d1 esetében került az a függvény meghívásra? Ez ellen a fordító se tudná a felhasználót
megvédeni.

Írjunk faktoriális számoló algoritmus template-ek segítségével !

template<int N>
struct Fact
{

static const int val = N*Fact<N-1>::val;
};

template<>
struct Fact<0>
{

static const int val = 1;
};

int main()
{

std::cout << Fact<5>::val << std::endl; //120
}

Fact 4szer példányosul: Fact<5>, ..., Fact<1>, majd a legvégén az általunk specializált Fact<0>-t
hívja meg.

1.3.3. Megjegyzés. Ahogyan ezt korábban megállapítottunk, egy konstans osztályszintű változót függ-
vénytörzsön belül is inicializálhatunk.

Ez fel is hívja a figyelmet a template-ek veszélyeit statikus változók használatakor.

template <class T>
class A
{

static int count;
public:

A()
{

std::cout << ++count << ’ ’;
}

5



};

template <class T>
int A<T>::count = 0;

int main()
{

for(int i = 0; i<5; i++)
{

A<int> a;
A<double> b;

}
}

Kimenet: 1 1 2 2 3 3 4 4 5 5
Bár arra számítanánk, hogy 1-től 10ig lesznek a számok kiírva, ne felejtsük, hogy itt két teljesen

különböző osztály fog létrejönni: A<int> és A<double>, így a count adattag hiába osztályszintű, 2 teljesen
különböző példánya lesz ennek is : A<int>::count és A<double>::count.

1.4. Dependent scope
Lehetőségünk van arra hogy osztályon belül deklaráljunk még egy osztályt. Bár erről bővebben a következő
órai jegyzetben lesz szó, egy igen fontos problémát vet fel.

class A
{
public:

class X {};
};

void f(A a)
{

A::X x;
}

int main()
{

A a;
f(a);

}

Ezzel semmi probléma nincs. Legyen A egy template osztály!

template <class T>
class A
{
public:

class X {};
};

template <class T>
void f(A<T> a)
{

A<T>::X x;
}

int main()
{

A<int> a;
f(a);

6



}

Itt máris bajba jutottunk, a fordító azt a hibát fogja jelezni, hogy X egy un. dependent scope-ban van.
Ez azt jelenti, hogy attól függően, milyen template paraméterrel példányosítjuk A-t, X-nek lehet más a
jelentése. Az alábbi kód ezt jól demonstrálja:

template <typename T>
struct A
{

class X{};
};

template <>
struct A <int>
{

static int X;
};

int A<int>::X = 0;

template <typename T>
void f()
{

A<T>::X;
}

Itt az f függvényben vajon mi lesz A<T>::X? A válasz az hogy nem tudni, hisz ha int-el példányosítunk
akkor statikus adattag, ha bármi mással, akkor meg egy típus. Ezért kell a fordítónak biztosítani, hogy
a template paramétertől függetlenül garantáltan típust fog oda kerülni. Ezt a typename kulcssszóval
tehetjük meg.

template <typename T>
void f()
{

typename A<T>::X;
}

A typename garantálja a fordítónak, hogy bármi is lesz T, A<T>::X mindenképpen típus lesz. Ha mégis
olyan template paramétert adunk meg, aminél ez nem teljesülne (ez esetben T = int) akkor fordítási
idejű hibát kapunk.

1.4.1. Megjegyzés. A fordító általában szokott szólni, hogy a typename kulcsszó hiányzik.

1.4.2. Megjegyzés. A dependent scope problémája nem csupán az osztályon belüli osztályokra érvényes.
Nemsokára meglátjuk, hogy a typedef kulcsszó is ide tud vezetni.

Így viszont felmerülhet a kérdés hogy van-e szükség typename kulcsszóra, ha egy std::vector<int>::iterator
típusú objektumot akarunk létrehozni (std::vector<int>::iterator vit;). A válasz az hogy nem,
hisz ha konkrétan megadjuk a típust, amellyel példányosítanánk, akkor a fordító arra a konkrét típusra
vissza tudja keresni, hogy std::vector<int>::iterator típus-e, vagy sem.

1.5. Nem template osztály átírása template osztályra
Már csak az a probléma, hogy List csak int-eket képes tárolni. Csináljunk belőle egy template osztályt!
Feladatunk csupán annyi, hogy az osztály elé írjunk egy template <typename T>-t, és minden List-et
List<T>-re, valamint minden int-et T-re cseréljünk. Ehhez nyilván az iterátorainkat is módosítani kell
majd.

Időközben felmerül a hatékonyság kérdése is. A listánkban eddig mindent érték szerint vettünk át,
ami int-nél (általában) hatékonyabb, mint a referencia szerinti, azonban template-eknél nem garantáljuk,
hogy ilyen kis méretű típussal fogják példányosítani az osztályunkat, így ilyenkor célszerű úgy hozzáállni
az implementáláshoz, hogy a leendő template paraméter egy nagyon nagy mérettel rendelkező típus lesz,
melynél érték helyett hatékonyabb konstans referenciával visszatérni és átvenni a paramétereket.

7



1.5.1. Megjegyzés. Általában egy primitív típus, mint pl. az int vagy char, kisebb mérettel rendelkezik
mint a hozzá tartozó pointer vagy referencia típus, így hatákonyabb ezeket a típusokat inkább érték szerint
átvenni.

list.hpp:

#ifndef LIST_H
#define LIST_H

#include <iosfwd>

template<typename T>
class List;

namespace detail
{

template<typename T>
class Iterator
{
public:

explicit Iterator(List<T> *p) : p(p) {}
bool operator==(Iterator other) const { return p == other.p; }
bool operator!=(Iterator other) const { return !(*this == other); }
Iterator operator++();
T& operator*() const;

private:
template<typename>
friend class ConstIterator;
List<T> *p;

};

template<typename T>
class ConstIterator
{
public:

ConstIterator(Iterator<T> it) : p(it.p) {}
explicit ConstIterator(const List<T> *p) : p(p) {}
bool operator==(ConstIterator other) const { return p == other.p; }
bool operator!=(ConstIterator other) const

{ return !(*this == other); }
ConstIterator operator++();
const T& operator*() const; //konstans referenciával tér vissza!

private:
const List<T> *p;

};
}

template <typename T>
class List
{
public:

typedef detail::Iterator<T> Iterator;
typedef detail::ConstIterator<T> ConstIterator;
explicit List(const T &data_, List *next = 0) : data(data_), next(next) {}
∼List() { delete next; }
List(const List &other);
List& operator=(const List &other);
void add(const T &data);

8



Iterator begin() { return Iterator(this); }
ConstIterator begin() const { return ConstIterator(this); }
Iterator end() { return Iterator(0); }
ConstIterator end() const { return ConstIterator(0); }

private:
friend Iterator;
friend ConstIterator;
T data;
List *next;

};

template<typename T>
std::ostream &operator<<(std::ostream& os, const List<T> &l);

#endif

list.cpp:

#include "list.hpp"
#include <iostream>

template<typename T>
List<T>::List(const List &other) : data(other.data), next(0)
{

if (other.next != 0)
{

next = new List(*other.next);
}

}

template<typename T>
List<T> &List<T>::operator=(const List<T> &other)
{

if (this == &other)
return *this;

delete next;
data = other.data;
if (other.next)
{

next = new List(*other.next);
}
else
{

next = 0;
}
return *this;

}

template <typename T>
void List<T>::add(const T &data)
{

if (next == 0)
{

next = new List(data);
}
else
{

next->add(data);

9



}
}

namespace detail
{

template <typename T>
Iterator<T> Iterator<T>::operator++()
{

p = p->next;
return *this;

}

template <typename T>
T& Iterator<T>::operator*() const
{

return p->data;
}

template <typename T>
ConstIterator<T> ConstIterator<T>::operator++()
{

p = p->next;
return *this;

}

template <typename T>
const T& ConstIterator<T>::operator*() const
{

return p->data;
}

}

template<typename T>
std::ostream& operator<<(std::ostream& os, const List<T> &l)
{

for(typename List<T>::ConstIterator it = l.begin(); it != l.end(); ++it) //
dependent scope!

{
os << *it << ’ ’;

}
os << std::endl;
return os;

}

main.cpp

#include <iostream>
#include "list.hpp"

int main()
{

List<int> head(5);
head.add(8);
head.add(10);
head.add(8);
std::cout << head;

}

10



Fordításnál azonban linkelési hibát kapunk, de miért? A list.hpp-ben benne van mindenféle deklaráció,
és a list.cpp-ben meg több List-béli implementáció. A válasz a template-ek lustaságában rejlik.

Amikor a list.cpp-t ill. main.cpp-t fordítjuk, megfelelően létrejön az object fájl, mely tartalmazza
példaképp azt, hogy a main függvény hivatkozik a List<int>::add függvényre. Linkeléskor a fordító
keresi ennek a függvénynek az implementációját, azonban minden List-béli függvény template, és a
list.cpp-ben semmit sem példányosítunk, az szinte teljesen üres lesz fordítás után.

Ennek következményeképp template osztályokat/függvényeket definícióval együtt a header fájlokban
kell tárolni.

Megoldás lehet, hogyha az egész list.cpp tartalmát bemásoljuk a list.hpp-be (itt már azonban muszáj
lesz az iosfwd-t iostream-re váltani). Az átláthatóság azonban még így se esett áldozatul, mert a fájl
tetején vannak a deklarációk, végén külön a definíciók, így még ugyanúgy könnyedén és gyorsan kinyerhető
belőle a szükséges információ.

1.5.2. Megjegyzés. Ha nagyon fontosnak érezzük, hogy a definíciók külön fájlban legyenek, az is meg-
oldható. Nevezzük át a list.cpp fájlt list_impl.hpp-ra, és include-oljuk a list.hpp végén.

11


	Template
	Függvény template-ek
	Osztály template-ek
	Template specializáció
	Dependent scope
	Nem template osztály átírása template osztályra


