C++
Gyakorlat jegyzet

8. ora

A jegyzetet UMANN Kristof készitette HORVATH Gébor gyakorlata alapjan. (2018. 4prilis 30.)

1. Template

1.1. Filiggvény template-ek
Térjiink vissza a régebben megirt swap fiiggvényiinkhoz.

void swap(int &a, int &b)

{
int tmp = a;
a = b;
b = tmp;

X

Ahogy azt lattuk, tal tudjuk terhelni ezt a fiiggvényt, hogy més tipusi objektumokat is meg tudjunk
cserélni. Azonban gyorsan megallapithato, hogy allandéan egy tjabb overloadot 1étrehozni nem épp ide-
alis megoldas. Ez a kisebb gond, a nagyobb az, hogy a kédismétlés adldozatai lesziink: ha barmi miatt
megvaltozna a swap bels6 implementacioja (pl. talalunk hatékonyabb megoldast), az Gsszes 1étezs swap
fliggvényben meg kéne ejteni a valtoztatast. E probléma elkeriilésére egy megoldés lehet, ha létrehozunk
egy sablont, melynek mintajara a fordité6 maga tud generalni egy megfelels fliggvényt.

template <typename T>
void swap(T &a, T &b)
{

T tmp = a;
a = b;
b = tmp;

by

Az igy implementalt swap fiiggvény egy template, és a template paramétere (T) egy tipus. Ez alapjan a
fordité méar létre tud hozni hozni megfelels fiiggvényeket :

int main()

{
int a = 2, b = 3;
swap<int>(a, b);
double ¢ = 1.3, d = 7.8;
swap<double>(c, d);

}

A forditénak csak annyi dolga van, hogy minden T-t lecseréljen int-re, és méar kész is a fliggvény. A fenti
példaban mi explicit megmondtuk a forditonak, hogy swap-ot milyen template paraméterrel példanyositsa
(instantiate), azonban fiiggvényeknél erre nem feltétleniil van sziikség: a forditoé tudja a és b tipusat, igy
ki tudja talalni hogy mit kell behelyettesitenie.

int main()

{
int a = 2, b = 3;
swap(a, b);
double ¢ = 1.3, d = 7.8;
swap(c, d);

}

Ezt a folyamatot (amikor a fordito kitalalja a tempalte paramétert) template paraméter dedukcionak
(template parameter deduction) hivjuk.



1.1.1. Megjegyzés. Természetesen a példanyositas joval bonyolultabb annal, hogy a a forditd6 minden
T-t egy konkrét tipusra cserél, de ebben a kdnyvben az egyszertiiség kedvéért elégedjiink meg ennyivel.

Nem csak tipus lehet template paraméter — barmi ami nem karakterlanc literal vagy lebegSpontos
SzZAam.

1.1.2. Megjegyzés. A lebegSpontos szamokra vonatkozo6 indoklast késgbb a template specializacioknal
lesz leirva, de a karakterlanc literalokra mar most adhatunk vélaszt.

Mivel a C++ban van lehetSség fliggvénytilterhelésre, ezért a fordité forditas kozben nem csak a
fliggvény nevét, de annak paraméterlistajat, visszatérési értékét és a template paraméterekre vonatkozo
informaciokat (stb.) is kénytelen eltarolni a fiiggvény nevével egyiitt. Amennyiben karakterlanc literal is
lehetne template paraméter, nagyon meg tudna néni ennek a sztringnek a hossza, és lassithatna a forditéasi
idé6t.

template <typename T, int ArraySize>
int arraySize(const T (&array) [ArraySize])

{
return ArraySize;
}
int main()
{
int i[10];
std::cout << arraySize(i) << std::endl; //10
+

A fenti kod a 3. gyakorlat végén tett megjegyzésbdl lehet ismerds. Jol demonstréalja a template paraméter
dedukciot.

1.2. Osztaly template-ek

Nem csak fliggvények, osztalyok is lehetnek template-ek melyen nagyon hasonléan miikodnek. A kévetkezs
kodrészletekben a template osztalyok mellett megismerkedhetiink még a template-ek ,lustasagaval” is.

#include <iostream>

template <typename T>
struct X
{
void £Q)
{
T t;
t.foo();

}s
struct Y
{
void bar() {}
};
int main() {}

Ez a kod tdgy tinhet, hogy nem fog lefordulni, 1évén mi soha semmilyen foo tagfiiggvényt nem irtunk,
azonban mégis le fog. Ez azért van, mert a template osztalyok (és fiiggvények) csak sablonok, amibdl
aminek alapjan a fordito generalhat egy konkrét osztalyt (vagy fiiggvényt), és mivel sose példanyositottuk,
forditas utédn az X template osztaly nem fog szerepelni a kodban. Szintaktikus ellenérzést végez a fordito,
(pl. zarojelek be vannak-e zarva, pontosvesszé nem hianyzik-e stb.), de azt, hogy van-e olyan T tipus, ami
rendelkezik foo () fiiggvénnyel, méar nem.

Példanyositsuk az X osztalyt Y-nal!



int main()

{
X<Y> x;

3

Ekkor mar azt varndnk hogy forditasi hibat dobjon a fordit6, hisz Y-nak nincs foo () metédusa, azonban
mégis gond nélkiil lefordul, mivel az £() tagfiiggvényt nem hivtuk meg, igy nem is példanyosult az
osztalyon beliil.

int main()
{
X<Y> x;
x.TQ;
}

Itt mar végre kapunk forditési hibat, mert példanyosul f (). Ez jol mutatja, hogy a template-ek lustak,
és csak akkor példanyosulnak, ha ,nagyon muszaj”.

A template-eknek adhatunk meg alapértelmezett értéket.

template <typename T = void> //alapértelmezett paraméter
struct X {/* ... #/};

struct Y {/* ... */};

int main()

{
X<Y> x;
X<> x2;
}
Tlyenkor nem sziikséges megadni template paramétert (mely esetben értelemszertien X<> == X<void>).

Ahogyan az emlitve volt korabban, szinte barmi lehet template paraméter, akar egy mésik template
is.
template <typename T>
struct X {/* ... */};

struct Y {/* ... */};

template <template <typename> class Templ>

struct Z
{
Templ<int> t;
};
int main()
{
Z<X> z;
}

Fent Templ egy olyan template, aminek a template paramétere egy tipus. Igy Z-nek a template para-
métere egy olyan template, aminek a template paramétere egy tipus. Mivel X egy template (és template
paramétere egy tipus), igy megadhato Z-nek template paraméterként.

1.2.1. Megjegyzés. Fent a template paraméter listaAban typename helyett class szerepel. Ezek gyakor-
latilag ekvivalensek, mind a kett& azt jelenti, hogy az adott paraméter tipus (bar a typename beszédesebb).

A fenti példakban mindig egy default konstruktort hivtunk meg, amikor objektumokat hoztunk létre.
Helyes lenne-e az, ha explicit médon kiirnank a zardjeleket (hangsilyozva a default konstruktor hivast)?



int main()

{
X<Y> x(Q);
X<> y20;
Z<X> z();
}

A kod helyesen lefordul, de a jelentése nem ugyanaz, mintha nem lenne ott a zardjel. Mivel a c++
nyelvtana nem egyértelmi, mas kontextusban ugyanaz a kodrészlet mast jelenthet (egyik legegyszertibb
példa a static kulcsszo), igy meg kellett alkotni egy olyan szabalyt, miszerint amit deklaracioként lehet
értelmezni, azt deklaracioként kell értelmezni. Igy ezek fiiggvénydeklaraciok lesznek: Az els§ esetben
példaul egy olyan fiiggvényt deklaralunk, melynek neve x, X<Y>-al tér vissza és nem var paramétert.

Igy ha default konstruktort szeretnék meghivni, semmilyen zaréjelt nem szabad hasznalni.

1.2.2. Megjegyzés. C+-+11lben lehet gombolyd zardjel helyett helyett kapcsos zardjelet alkalmazni
konstruktorhivasnél, igy ez a probléma nem fordulhat els. pl: X<Y> x{};

A template-ek paramérének ismertnek kell lennie forditasi idében.

template <int N>
void £() {}

int main()

{

int n;

std::cin >> n;

f<n>(); //hiba, n nem ismert forditdsi iddben
}

Ez nyilvanvalo, hisz a template-eknek az a funkcidja, hogy a fordité generaljon belsliikk példanyokat, és a
forditasi id6 végeztével erre nincs lehetGség.

1.2.3. Megjegyzés. Fontos még, hogy a template-ek nagyon megnévelik a forditéasi id6t, igy nem mindig
éri meg egy olyan fliggvényt is template-ként megirni, melyet nem feltétleniil muszaj.
1.3. Template specializacio

Néha szeretnénk, hogy bizonyos specialis behelyettesitéseknél més legyen az implementacié mint az alap
sablonban. Ilyenkor szokés specializacidkat (template specialization) létrehozni:

template <class T>

struct A
{

A() { std::cout << << std::endl; }
};

template <> //template specializdcid
struct A<int>
{
A() { std::cout << << std::endl; }
3

template <class T>
void £() { std::cout << << std::endl; }

template<> //template spectalizdcid
void f<int>() { std::cout << << std::endl; }

int main()
{
A<std::string> al; //general 4



f<std::string>(); //general f
A<int> a2; //special 4
f<int>(); //special f

}

Mind A osztalyhoz, mind £ fiiggvényhez létrehoztunk egy specializaciét arra az esetre, ha a template pa-
raméterként int-et kapnak. Szamos okunk lehet arra hogy ezt tegyiik: a standard kényvtar megfényesebb
példaja az std: :vector osztaly, mely egy template, és van template specializicidja bool esetre.

1.3.1. Megjegyzés. Az std: :vector<bool> szamos optimalizicidkat tartalmazhat (persze nem feltét-
leniil, hisz ez implementaci6 fiiggs): altalaban nem bool-okban tarolja az adatokat, hanem bitekben.
Sajnos azonban ez hatranyokkal is jar, példaul hogy a [] operator érték és nem referencia szerint ad
vissza.

1.3.2. Megjegyzés. Visszatérve egy korabbi allitdshoz, miért nem lehet lebeg&pontos szam template
paraméter ? Lévén két lebeg&pontos szdm kénnyedén lehet csak nagyon kis mértékben eltérd, ezért konny
egy ilyesmi hibaba belefutni:
egyenld, de mivel szamos modositdson mentek keresztiil, minimalis mértékben, de nem lesznek egyenlGek.
Ilyenkor ha egy template paraméterként lebeg&pontos szamot varé fiiggvénynek megadnank ket template
paraméteriil, kétszer kéne példanyositani az adott fiiggvényt.

Ez a kisebb gond, de mi van ha pont erre az értékre mi létrehoztunk egy template specializaciot,
és csak (pl.) d1 esetében keriilt az a fiiggvény meghivasra? Ez ellen a fordité se tudna a felhasznalot
megvédeni.

Irjunk faktorialis szamolé algoritmus template-ek segitségével !

template<int N>
struct Fact

{

static const int val N*xFact<N-1>::val;

};

template<>
struct Fact<0>
{

static const int val

1]
[
-

};

int main()

{
std::cout << Fact<5>::val << std::endl; //120
}

Fact 4szer példanyosul: Fact<5>, ..., Fact<1>, majd a legvégén az altalunk specializalt Fact<0>-t
hivja meg.

1.3.3. Megjegyzés. Ahogyan ezt korabban megéllapitottunk, egy konstans osztalyszintii valtozot fligg-
vénytorzson beliil is inicializalhatunk.

Ez fel is hivja a figyelmet a template-ek veszélyeit statikus valtozok hasznélatakor.

template <class T>

class A
{
static int count;
public:
AQO
{
std::cout << ++count << ;
}



};

template <class T>
int A<T>::count = 0;

int main()

{
for(int 1 = 0; i<5; i++)
{
A<int> a;
A<double> b;
¥
}

Kimenet: 1 1 2 2334455

Bar arra szamitanank, hogy 1-t6l 10ig lesznek a szamok kiirva, ne felejtsiik, hogy itt két teljesen
kiilonbo6z6 osztaly fog létrejénni: A<int> és A<double>, igy a count adattag hidba osztéalyszinti, 2 teljesen
kiilonb6z6 példanya lesz ennek is: A<int> : :count és A<double>: :count.

1.4. Dependent scope

Lehet&ségiink van arra hogy osztélyon beliil deklaraljunk még egy osztalyt. Bar errél bévebben a kévetkezd
orai jegyzetben lesz sz0, egy igen fontos problémat vet fel.

class A
{
public:
class X {};
}s
void f(A a)
{
A::X x;
}
int main()
{
A a;
f(a);
}

Ezzel semmi probléma nincs. Legyen A egy template osztaly!

template <class T>
class A
{
public:
class X {};
3

template <class T>
void f(A<T> a)

{
A<T>::X x;
}
int main()
{
A<int> a;
f(a);



1

Itt maris bajba jutottunk, a fordité azt a hibat fogja jelezni, hogy X egy un. dependent scope-ban van.
Ez azt jelenti, hogy attol fiiggden, milyen template paraméterrel példanyositjuk A-t, X-nek lehet mas a
jelentése. Az alabbi kéd ezt jol demonstralja:

template <typename T>

struct A
{

class X{};
}s;

template <>
struct A <int>

{

static int X;
}s
int A<int>::X = 0;

template <typename T>

void £()
{

A<T>::X;
}

Itt az £ fiiggvényben vajon mi lesz A<T>: :X7 A valasz az hogy nem tudni, hisz ha int-el példanyositunk
akkor statikus adattag, ha barmi maéassal, akkor meg egy tipus. Ezért kell a forditénak biztositani, hogy
a template paramétertdl fliggetleniil garantaltan tipust fog oda keriilni. Ezt a typename kulcssszoval
tehetjiik meg.

template <typename T>
void £(O)
{

typename A<T>::X;
¥

A typename garantalja a forditonak, hogy barmi is lesz T, A<T>: :X mindenképpen tipus lesz. Ha mégis
olyan template paramétert adunk meg, aminél ez nem teljesiilne (ez esetben T = int) akkor forditasi
idejd hibat kapunk.

1.4.1. Megjegyzés. A fordito altalaban szokott szolni, hogy a typename kulcsszo hianyzik.

1.4.2. Megjegyzés. A dependent scope probléméaja nem csupan az osztalyon beliili osztalyokra érvényes.
Nemsokara meglatjuk, hogy a typedef kulcsszo is ide tud vezetni.

Igy viszont felmeriilhet a kérdés hogy van-e sziikség typename kulcsszora, ha egy std : :vector<int>: :iterator
tipustt objektumot akarunk létrehozni (std: :vector<int>: :iterator vit;). A vélasz az hogy nem,
hisz ha konkrétan megadjuk a tipust, amellyel példanyositanank, akkor a fordité arra a konkrét tipusra
vissza tudja keresni, hogy std: :vector<int>: :iterator tipus-e, vagy sem.

1.5. Nem template osztaly atirasa template osztalyra

Mar csak az a probléma, hogy List csak int-eket képes tarolni. Csinaljunk bel6le egy template osztalyt!
Feladatunk csupéan annyi, hogy az osztaly elé irjunk egy template <typename T>-t, és minden List-et
List<T>-re, valamint minden int-et T-re cseréljlink. Ehhez nyilvan az iteratorainkat is modositani kell
majd.

Id6kozben felmeriil a hatékonysag kérdése is. A listankban eddig mindent érték szerint vettiink &t,
ami int-nél (altalaban) hatékonyabb, mint a referencia szerinti, azonban template-eknél nem garantaljuk,
hogy ilyen kis méretii tipussal fogjak példanyositani az osztalyunkat, igy ilyenkor célszerd tgy hozzaéllni
az implementalashoz, hogy a leendd template paraméter egy nagyon nagy mérettel rendelkezé tipus lesz,
melynél érték helyett hatékonyabb konstans referenciaval visszatérni és atvenni a paramétereket.



1.5.1. Megjegyzés. Altalaban egy primitiv tipus, mint pl. az int vagy char, kisebb mérettel rendelkezik
mint a hozza tartozoé pointer vagy referencia tipus, igy hatdkonyabb ezeket a tipusokat inkabb érték szerint
atvenni.

#ifndef LIST_H
#define LIST_H

#include <iosfwd>

template<typename T>
class List;

namespace detail

{
template<typename T>
class Iterator
{
public:
explicit Iterator(List<T> *p) : p(p) {3}
bool operator==(Iterator other) const { return p == other.p; }
bool operator!=(Iterator other) const { return !(*this == other); }
Iterator operator++();
T& operator*() const;
private:
template<typename>
friend class Constlterator;
List<T> *p;
3
template<typename T>
class ConstlIterator
{
public:
ConstIterator(Iterator<T> it) : p(it.p) {}
explicit ConstIterator(const List<T> *p) : p(p) {}
bool operator==(ConstIterator other) const { return p == other.p; }
bool operator!=(ConstIterator other) const
{ return !'(*this == other); }
ConstIterator operator++();
const T& operator*() const; //konstans referencidual tér vissza!
private:
const List<T> *p;
+;
¥

template <typename T>
class List
{
public:
typedef detail::Iterator<T> Iterator;
typedef detail::ConstIterator<T> ConstIterator;
explicit List(const T &data_, List *next = 0) : data(data_), next(next) {}
~List() { delete next; }
List(const List &other);
List& operator=(const List &other);
void add(const T &data);



Iterator begin() { return Iterator(this); }

ConstIterator begin() const { return ConstIterator(this); }

Iterator end() { return Iterator(0); }

ConstIterator end() const { return ConstIterator(0); }
private:

friend Iterator;

friend ConstIterator;

T data;

List *next;

};

template<typename T>
std::ostream &operator<<(std::ostream& os, const List<T> &1);

#endif

#include
#include <iostream>

template<typename T>
List<T>::List(const List &other) : data(other.data), next(0)
{
if (other.nmext != 0)
{
next = new List(*other.next);

3

template<typename T>
List<T> &List<T>::operator=(const List<T> &other)
{

if (this == &other)

return *this;

delete next;

data = other.data;

if (other.next)

{
next = new List(*other.next);
}
else
{
next = 0;
}

return *this;

template <typename T>
void List<T>::add(const T &data)

{
if (next == 0)
{
next = new List(data);
}
else
{

next->add(data) ;



namespace detail
{
template <typename T>
Iterator<T> Iterator<T>::operator++()
{
P = p->next;
return *this;

template <typename T>
T& Iterator<T>::operator*() const
{

return p->data;

}

template <typename T>
ConstIterator<T> ConstIterator<T>::operator++()

{
P = p->next;
return *this;

template <typename T>
const T& ConstIterator<T>::operator*() const

{
return p->data;

3

template<typename T>
std::ostream& operator<<(std::ostream& os, const List<T> &l1)

{
for(typename List<T>::ConstIterator it = l.begin(); it != l.end(); ++it) //
dependent scope!

{

0s << *xit << ;

}
os << std::endl;
return os;

#include <iostream>
#include

int main()

{
List<int> head(5);
head.add(8);
head.add(10);
head.add(8);
std::cout << head;
}

10



Forditasnal azonban linkelési hibat kapunk, de miért? A list.hpp-ben benne van mindenféle deklarécio,
és a list.cpp-ben meg to6bb List-béli implementacio. A valasz a template-ek lustasagaban rejlik.

Amikor a list.cpp-t ill. main.cpp-t forditjuk, megfeleléen létrejon az object fajl, mely tartalmazza
példaképp azt, hogy a main fiiggvény hivatkozik a List<int>: :add fliggvényre. Linkeléskor a fordito

A

list.cpp-ben semmit sem példanyositunk, az szinte teljesen iires lesz forditas utéan.

Ennek kovetkezményeképp template osztalyokat/fliggvényeket definicioval egyiitt a header fajlokban
kell tarolni.

Megoldas lehet, hogyha az egész list.cpp tartalméat beméasoljuk a list.hpp-be (itt mar azonban muszaj
lesz az iosfwd-t iostream-re valtani). Az atlathatosidg azonban még igy se esett aldozatul, mert a fajl
tetején vannak a deklaraciok, végén kiilon a definiciok, igy még ugyantugy konnyedén és gyorsan kinyerhetd
belle a sziikséges informécio.

1.5.2. Megjegyzés. Ha nagyon fontosnak érezziik, hogy a definiciok kiilon fajlban legyenek, az is meg-
oldhaté. Nevezziik at a list.cpp fajlt list _impl.hpp-ra, és include-oljuk a list.hpp végén.

11



	Template
	Függvény template-ek
	Osztály template-ek
	Template specializáció
	Dependent scope
	Nem template osztály átírása template osztályra


