C++
Gyakorlat jegyzet

12. 6ra

A jegyzetet UMANN Kristof készitette HORVATH Gabor gyakorlata alapjan. (2018. aprilis 30.)

1. Beugré kérdések

A kovetkezo kérdések egy régebbi, kiszivargott C++ beugrobol lettek beemelve. Igy értelemszertien ezek-
kel a kérdésekkel az olvasé nem fog semmiképpen se talalkozni. Alaposabb magyarazatot nem fliztem a
megoldasokhoz, ugyanis azok a jegyzet alapos megértése utan trivialisak.

1.) Hany byte-on tarol a C++ egy short int-et?
a) 1
b) implementaciofiiggs
c) 8
d) 2
Valasz: Implementaciofiiggs.
2.) Melyik relaci6 hamis az alabbiak koztil?
a) sizeof (char) == sizeof(signed char)
b) sizeof (short) <= sizeof(long int)

¢) sizeof (bool) == sizeof (char)

d) sizeof (float) <= sizeof(long double)
Valasz: bool == char
3.) Mennyi a 012 konstans értéke?
a) 12
b) 0.12
c) 18
d) 10
Valasz: 10
4.) Melyik nem preprocesszor direktiva?
a) #define
b) #else
c) #elif
d) #elseif
Valasz: #elseif
5.) Melyik kulcsszo nem a tarolasi osztalyt specifikilja egy deklaracioban ill. definiciéban?
a) static
b) auto
¢) register

d) public

Valasz: public, ugyanis a register azt jelenti, hogy a valtozét a registerbe tarolja, azonban azt
hogy milyen valtozot hol érdemes tarolni, jobban tudja a fordito, igy nem érdemes kiirni. Az auto
azt jelenti hogy a valtozo stacken legyen, ez régebben implicit médon mindehol ott volt, de mostméar
nem, sét, c+-+11ben mast is jelent.

6.) Az X: :£() fiiggvényhivas soran mit ir ki a program?

int 1 = 1;
namespace X
{
int 1 = 2;
void £()
{
int a = i;
int 1 = a + X::1 + ::1;
std::cout << i << std::endl;
}
}
a) 1
b) semmit, forditasi hiba keletkezik
c) 5
d) 4

Valasz: 5
7.) Melyik igaz az alabbiak koziil ?

struct X
{
X@(int 1 = 0) {}

—

a) A fenti struct-nak van default konstruktora.
b) A fenti struct-nak csak default konstruktora van.
¢) A fenti struct-nak nincs default konstruktora.

d) A fenti struct-nak nincs copy konstruktora.

Valasz: Az els6 az igaz, tovabba sok egyéb dolgot is general még.

8.) Az alabbi példaban a Foo f(10) ; konstruktor hivisa utdn mennyi lesz f.x értéke?

struct Foo

{
int x, y;
Foo(int i):y(i),x(y++) {}
};
a) 11
b) 0
¢) nem definialt
d) 10

Valasz: Nem definialt.
9.) Melyik tipusnak van push _front tagfiiggvénye?

a) std: :set

b) std: :list
¢) std: :stack
d) std: :vector

Valasz: std: :1ist

10.) Mi lesz az a valtozo értéke a fiiggvényhivas utan?

int a =1, b = 2;
void f(int x, int y)
{
int t = x;
X =y;
y =1t
}
f(a,b);
a) 1
b) 2

¢) nem definialt
d) semmi, forditasi hiba keletkezik

Valasz: 1
11.) Melyik allitas igaz egy konstans objektum esetében?

a) Az objektumnak csak private adattagja lehet.

b) Az objektumnak csak azok a tagfliggvényei hivhatoak meg, amelyek nem modositjak az adat-
tagjait.

¢) Az objektumnak csak a konstans tagfliggvényei hivhatoak meg.
d) Az objektum csak default konstruktorral hozhato létre.

Valasz: Az objektumnak csak a konstans tagfiiggvényei hivhatok meg.
12.) Melyik allitas igaz az alabbiak koziil ?

a) A dynamic_cast soha nem dob kivételt.
b) A dynamic_cast hasznéalatdhoz nem lehet statikus adattagja az osztélynak.
¢) A dynamic_cast hasznalatahoz polimorf osztalyokra van sziikség.

d) A dynamic_cast fordités idejii tipuskonverziot végez.
Valasz: Polimorf osztélyra van sziikség a hasznalatahoz.
13.) Mi a paraméterdedukci6?

a) Az az eljaras, amikor referencia-~szerinti paraméteratadasra cseréljiik az érték-szerintit.
b) Az az eljaras, amikor a forditoprogram levezeti a template paramétereket a fiiggvényhivasbol.
¢) Az az eljaras, amikor linker feloldja a kiilsé fiiggvényhivasok paramétereit.

d) Az az eljaras, amikor default paraméterekkel latjuk el a fiiggvény paramétereket.
Valasz: Az az eljaras, amikor a forditéprogram levezeti a template paramétereket a fiiggvényhivasbol.

14.) Az alabbiak koziil melyik fiiggvényhivassal lehet ekvivalens az alabbi (csillaggal jeldlt) operatorhivas?

class Matrix
{

/).
};
Matrix a,b;

a+ by // (%)

a) a.operator+(a,b) ;
b) b.operator+(a) ;
¢) operator+(a,b) ;

d) Matrix.operator+(a,b) ;

Valasz: A harmadik a jo, mert lehet egy fiiggvényen kiviili fiiggvényhivas a csillagozott rész.
15.) Melyik allitas igaz az alabbiak koziil ?

a) Egy int* const tipusi pointer mérete 8 byte.
b) A sizeof(int) == sizeof (int* const) relaci6 mindig igaz.
¢) Egy int* const tipust pointer nem valtoztathatja meg a mutatott értéket.

d) Egy int* const tipust pointer mutathat valtozora.

Valasz: Utolso.

2. Mintaviszga megoldas

2.1. Az irasbeli vizsga menete

A vizsga irasbeli részénél a feladat egy header fajl elkészitése, mellyel egy elére megadott cpp fajl helyesen
fordul. Amennyiben a program szabvanyos, azaz lefordul és nem okoz nem definialt viselkedést, kiirja a
vizsgazo osztalyzatat.

A cpp fajl leellenérzi hogy a header fajlban leirtak helyen oldjék meg a feladatot, azonban lehetnek
szélsGséges esetek, melyek nem vizsgal. Igy a sikeres futés utan sem biztos, hogy a header fajl a kiirt
jegyet megeéri.

A Kkiirt jegy emelett nem ,irodik jova” azonnal: a vizsgazénak meg kell védenie a munkajat, azaz
bizonyitania kell hogy a leirtakat, és a félév soréan tanultakat valoban érti. Amennyiben erre képtelen, agy
a jegye romlik, szélsGséget esetben elégtelenre is akar.

A header fajl csak is kizarolag a C++98-as szabvanynak megfelel kodot tartalmazhat, ellentkezd
esetben csak akkor, ha a vizsgazo kés6bb meg tudja mutatni, hogy 98-as szabvany szerint mi lenne a
megoldas.

2.2. Feladatleiras

A feladat az, hogy irjunk egy osztalyt, mely egy billentytizetet szimulal. Megfigyelhets a lenti C++ kod
alapjan, hogy line_editor lesz a konténer neve, valamint hogy 2 template paraméterrel rendelkezik. Az
felhasznalonak képesnek kell lennie, arra, hogy a billentytileiitéseit kiirattassa majd a konzolra, s&t, akar
arra is, hogy egy adott szévegnek ne csak végére, hanem elejére is irhasson.

#include <iostream>
#include

#include <string>
#include <algorithm>
#include <iterator>
#include

#include <list>
#include <vector>

const int max = 1000;
int main()

{

int your_mark = 1;

//2-es

line_editor<std::vector<int>, int> lev;
for(int i = 0; i < max; ++i)

{
lev.press(i);
lev.home();
lev.press(i);
}

std::vector<int> v = lev.enter();

line_editor<std::list<double>, double> lel;
lel.press(4.8);

lel.home();

lel.press(1.1);

std::list<double> c = lel.enter();

line_editor<std::string, char> les;
les.press()
les.press()
les.press();
)
)

>

B

les.press(
les.press(
les.home();
les.press()
les.press()
les.press();

)

)

>

.o

les.press(
les.press(

.o

std::string s = les.enter();

if (== s && == les.enter() && 2.2 > *(c.begin()) &&
2 * max == v.size() & max - 1 == v[0])
{
your_mark = c.size();
}
//3-as

les.press()
les.press()
les.press()
les.press()
les.press()
les.home();
les.insert();
les.press();
les.press();
s = les.enter();

for(int i = 0; i < max; ++i)
{
lev.press(2);
}
lev.home();
lev.insert();

for(int i = 0; i < max; ++i)
{

lev.press(1);
}
v = lev.enter();
lel.press(7.9);
lel.press(1.2)
lel.home();
lel.insert();
lel.press(1.5);
lel.insert();
lel.press(3.7);
c = lel.enter();

>

if (1.7 > c.front() && 1.3 < c.front() && vl max / 2] == vl max / 5] &&

1.4 > c.back() && 1U * max == v.size() && == s && 1 ==v[max / 4])
{
your_mark = c.size();
}
//4-es

line_editor<std::vector<int> > llev;
llev.press(3.3);

llev.press(1.1);

llev.home();

llev.del();

std::vector<int> 1lv = llev.enter();

line_editor<std::string> lles;
lles.press()
lles.press();
)
)

>

lles.press(
lles.press(
lles.backspace();
lles.backspace();
std::string f = lles.enter();

>

if (==f & 1v[0] <1.3)
{
your_mark += lv.size();
}
//5-0s

line_editor<std::list<int> > lle;
lle.press(3);

lle.home();

lle.insert();

llev.press(8);
llev.press(2);
llev.home();

lle.swap(llev);
lle.press(1);

std::1list<int> cl = 1lle.enter();
v = 1llev.enter();
if (1 == cl.front() && cl.size() > v.size() & 3 ==v[0])

{
your_mark += v.size();
}
std::cout << << your_mark;

std::endl(std::cout);
}

2.2.1. Megjegyzés. En most kiszedtem a kommenteket, de minden blokk (tehat pl. a 2-es és 3as kozotti)
ki van kommentezve.

2.3. l-es

Ahhoz hogy a program egyaltalan leforduljon, és kiirja hogy Your mark is 1, létre kell hoznunk egy
header fajlt. Fent lathato, hogy ennek milyen neviinek kell lennie: 1lineedit.h. Az is megfigyelhets, hogy
ez a header kapasbol kétszer van beillesztve, igy (ahogy minden header fajlnal is szokés) irjunk egy header
guardot.

#ifndef LINE_EDIT_H
#define LINE_EDIT_H

#endif

Igy mar van egy lesiink.

2.4. 2-es

A ketteshez mar létre kell hoznunk magat az osztalyt, és ahogy korabban megallapitottuk, 2 template
paraméter kell ehhez: az els6 egy konténer, amiben a felhasznal6 egy adott sor tartalméat fogja visszakapni,
a méasodik pedig a tarolandé tipus.

template <typename Cont, typename CharT>
class line_editor

{

-

A 2-eshez az alabbi fliggvényeket kell majd megirnunk:
— press: A CharT tipsa kapott paramétert eltarolja.
— home: Az adott sor elejére ugrik (nem var paramétert).

— enter: Uj sort kezd, és a meglevét visszaadja egy Cont tipusii objektumban eltarolva (nem vér
paramétert).

Kéne egy konténert vélasztani, melyben eltaroljuk a karaktereket. Itt logikus valasztas az std: :list,
mert gyakran kell majd szarnunk a sor kozepébe.

2.4.1. Megjegyzés. Hasznélhatnank std: :vector-t is, s6t barmit, melyet védéskor kell6képpen meg
tudunk indokolni.

#include <list>

template <typename Cont, typename CharT>
class line_editor
{
std::1list<CharT> line;
s

A kovetkezs kérdés, hogyan reprezentaljuk a kurzort, mely jelzi hova szirjon majd be a press fiiggvény.
Erre praktikus megoldas lehet egy iterator hasznélata.

template <typename Cont, typename CharT>
class line_editor
{
std::1ist<CharT> line;
typename std::list<CharT>::iterator cursor;

};

Felmeriil az is, kell-e konstruktor, destruktor, copy konstruktor és értékadd operator?

Ezt az els6t nem artana megirnunk: azonban line-t és cursor-t mivel inicializaljuk ? Megéllapithato,
hogy az std: :1ist default konstruktora szamunkra megfelels, igy azzal kiilon foglalkoznunk nem kell.
cursor-t allitsuk a sor végére.

Mivel mi dinamikusan nem foglaltunk le memoriat, és csak regularis tipusokat téarolunk, igy a tobbi
3 fliggvényre nincs sziikségilink.

template <typename Cont, typename CharT>
class line_editor
{
std::1ist<CharT> line;
typename std::list<CharT>::iterator cursor;
public:
line_editor() : cursor(line.end()) {3}

void press(CharT c)

{
/7. ..
}
void home ()
{
/).
}
Cont enter()
{
/7. ..
}

}s;

2.4.2. Megjegyzés. Megfigyelhets, hogy press érték szerint veszi 4t a paraméterét — nem kotelezd igy,
de barhogyan is tessziik, meg kell indokolni. Ebben az esetben lehet ra szamitani, hogy a felhasznald csak
primitiv tipusokat akar majd tarolni, legalabbis nem tul komplikaltakat, igy az érték szerinti atvétel itt
varhatéan hatékonyabb lesz.

A fentiek koziil a home fiiggvény talan a legegyszertibb: allitsuk cursor-t a sor elejére!

void home ()
{
cursor = line.begin();

}

Térjiink press-re: mivel az iterator konnyen invalidalédhat ha 1j elemet sztirunk be, az insert az
std: :1ist-nél visszaad egy iteratort az 1j elemre, igy érdemes a cursor-t erre beéllitani, és egyel el6rébb
vinni, hogy a kovetkez§ beszirés is az Gj elem utan kévetekezzen be.

void press(CharT c)

{
cursor = line.insert(cursor, c);
cursor++;

()

Az enter-nél vissza kell adnunk egy, a template paraméterként megadott konténer tipususaval megyezs
kontért, mert tartalmazza az eddig begépelt elemeket, majd torli a listat. Mivel minden STL konténer
rendelkezik olyan konstruktorral, mely egy iterator part var, és ez alapjan a két iterator kozti elemeket
be tudja szurni, igy ezt batran irhatjuk:

Cont enter()

{
Cont ret(line.begin(), line.end());
line.clear();
cursor = line.end();
return ret;
}

Ezzel a kettesiink is készen van.

2.5. 3-as

Sziikséglink lesz egy insert tegfiiggvényre, mely ki-be kapcsolja az insert billentytit (amennyiben ez nem
ismerds, az insert meghivasanak hatasara nem a kurzor utén kell majd besztirni elemeket, hanem a kurzor
uténi elemeket kell majd feliilirni).

Ehhez sziikségiink lesz egy logikai valtozora is, melyet alapértelmezetten allitsunk hamisra, és modo-
sitanunk kell majd press-t is.

template <typename Cont, typename CharT>
class line_editor

{
/.
bool isInsert;
public:
line_editor() : cursor(line.end()), isInsert(false) {}
void insert()
{
isInsert = l!isInsert;
}
void press(CharT c)
{
if (isInsert && cursor != line.end())
*cursor = c;
else
cursor = line.insert(cursor, c);
cursor++;
}
/7.
}s
2.6. 4-es

Megfigyelhetjiik, hogy a 4-eshez mér a 1line_edit osztalyt csak 1 template paraméterrel is tudnunk kell
példanyositani. Ez azt jelenti, hogy a masodik template paraméternek kell egy alapértelmezett behelyet-
tesitést biztonsitani, melynek meg kell egyeznie a Cont <al tarolt tipussal.

template <typename Cont, typename CharT = typename Cont::value_type>
class line_editor
{

/7

()

>

2.6.1. Megjegyzés. A fenti kettés typename talan Osszezavard lehet — a mésodikra a dependent scope
miatt van sziikség.

2.6.2. Megjegyzés. Mivel internetet lehet hasznalmi, nem kell megijedni, ha nem tudjuk ezt hogyan
kéne egybdl megesinalni. Elsfordulhat olyan, hogy olyan dologgal talalkozunk vizsgan szembe, amit se
el6adason, se gyakorlaton nem mondtak el: ez azért van ,mert ennek a targynak célja az, hogy ezekkel is
meg tudjunk kiizdeni.

Ezen kiviil két 0j tagfiiggvényt is meg kéne irnunk:
1. backspace: Az cursor mogotti elemet torli ki.

2. del: A cursor el6tti elemet torli.

template <typename Cont, typename CharT = typename Cont::value_type>
class line_editor
{
//
public:
void backspace()

{

cursor--;
delQ);

}

void del()

{

cursor = line.erase(cursor);
}
/7.
}s

2.7. 5-0s

Meg kell irnunk egy swap fiiggvényt, mely 2, kiilonb6z6 template paraméterrel rendelkez6 line_editor-t
megcserél.

/7.
#include <algorithm>

class line_editor

{
/7.
public:
/7.
template <class T, class U>
void swap(line_editor<T,U> &le)
{
std::swap(line, le.line);
std: :swap(cursor, le.cursor);
std: :swap(isInsert, le.isInsert);
}
}s

Azonban forditasi hibat kapunk, hisz egy kiilonb6z6 template pareméterekkel rendelkezé line_editor
kiilon tipusnak szamit, igy gondoskodunk kell arrél is, hogy minden line_editor barat legyen.

class line_editor

{
/.
public:
/)
template <class T, class U>
friend class line_editor;
s

10

Igy az 6tost is elértiik.

Hivatkozasok

[1] Horvath Gabor Programozdsi Nyelvek: C++ gyakorlatai, 2015/2016/2 ill. 2016,/2017/1.

[2] dr. Pataki Norbert Programozdsi Nyelvek: C++ el6adésai, 2015/2016/2.

[3] dr. Porkolab Zoltan Multiparadigmas Programozas eldadasai, 2016,/2017/2.

[4] Cppreference, http://en.cppreference.com/w/

[6] Scott Meyers: Effective C++, 1997.

[6] Scott Meyers: The Most Important Design Guideline, https://www.youtube.com/watch?v=
=65tg10NG18H8&t), 2014.

[7] Microsoft ~ Developer Network, Tokens (C++), |https://msdn.microsoft.com/en—
—us/library/3yx2xe3h.aspx

[8] Chandler Carruth: Garbage In, Garbage Out: Arquing about Undefined Behavior..., https://wuw.
youtube. com/watch?v=yG10Z69H_—o, CppCon 2016

[9] Brunner Tibor honlapja

11

http://en.cppreference.com/w/
https://www.youtube.com/watch?v=5tg1ONG18H8&t
https://www.youtube.com/watch?v=5tg1ONG18H8&t
https://msdn.microsoft.com/en-us/library/3yx2xe3h.aspx
https://msdn.microsoft.com/en-us/library/3yx2xe3h.aspx
https://www.youtube.com/watch?v=yG1OZ69H_-o
https://www.youtube.com/watch?v=yG1OZ69H_-o

	Beugró kérdések
	Mintaviszga megoldás
	Az írásbeli vizsga menete
	Feladatleírás
	1-es
	2-es
	3-as
	4-es
	5-ös

