1 \Q
| },
GHALM@% oAl
Q %/

=0 ;}’

NS

Robust & Precise incremental parsing of Haskell

Master of Science Thesis in the Programme Computer Science: Algorithms,
Languages and logic

ANDERS KARLSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Goteborg, Sweden, August 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Robust & Precise incremental parsing of Haskell

Anders Karlsson

© Anders Karlsson, August 2009.

Supervisor: Jean-Philippe Bernardy
Examiner: Koen Claessen

Department of Computer Science and Engineering
Chamers University of Technology

SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden August 2009

Abstract

By using an incremental parser library, this thesis will implement a
parser for the functional programming language Haskell. The parser will
be used in Yi, a text editor that allows precise editing modes using an
abstract syntax tree provided by the incremental parser library.

We will explain how to find errors in the code and how to mark them so
that they can be visually marked to the user in Yi. The parser is intended
to give feedback online, i.e. it will parse at each keystroke so that errors
are marked as soon as they appear. Problems that have occured during
the development and the solution to them will be described.

Sammanfattning

Med hjalp av ett inkrementell parserbibliotek, kommer vi i denna tes
att implementera en parser for det funktionella programmeringsspraket
Haskell. Parsern kommer att anvéindas i Yi, en textredigerare som tillater
noggranna redigeringsldgen med hjélp av ett abstrakt syntaxtrad, tillhan-
dahallet av det inkrementella parserbiblioteket.

Det kommer forklaras hur man hittar fel i koden och hur man mark-
erar dessa sa att de visuellt kan markeras for anvéndaren i Yi. Parsern
skall kunna ge respons “online”, dvs. den skall ge respons vid varje knapp-
tryckning sa att fel &r markerade sa snart de uppenbarar sig. Problem
som stotts pa under utvecklingen och deras l6sningar kommer beskrivas.

Acknowledgements

First of all I would like to thank my supervisor Jean-Philippe Bernardy
for his guidance and support during this project.

I would also like to thank Deniz Dogan for our many interesting dis-
cussions about the parser library, Yi in general, modes in Yi and Haskell.
Further kudos, in no specific order, goes to Andreas Svensson, Tobias
Olausson, Koen Claessen and Jeff Wheeler.

Thanks to Fredrik Andersson for being my opponent for this thesis.

Contents

1 Introduction

1.1

2 Aim

Motivation e

3 Background

3.1

3.2
3.3

3.4

4 The
4.1
4.2
4.3
4.4

4.5
4.6

Haskell
3.1.1 Identifiers and symbols. L.
3.1.2 Comments. e
3.1.3 Reserved words
3.1.4 Module declaration,
3.1.5 Importso Lo
3.1.6 Declarations (top)
3.1.7 Expressions o
Layout
Introduction to Yi
3.3.1 Lexing
3.3.2 Modes
3.3.3 Highlighting
Parser Combinators,

Haskell Parser

Overview oL
Thelexer
Layout
The Haskell parser
4.4.1 Basic Parsing Combinators
4.4.2 Layout and error-recovery strategy
4.4.3 Handling comments
444 Parsingamodule oL
4.4.5 Module declaration 0oL
446 Imports L
4.4.7 Top declarations (body)
448 data.
449 type
4410 class.
4.4.11 instance Lo oo
4.4.12 Function declaration
4.4.13 Function right handside
4.4.14 Typesignatures.
4.4.15 EXpressions e
Highlighting
Testing the parser

10
10
10
11
11
12
12
13
13
14
15
16
16
16
17

5 Result 46

5.1 Highlighting errors oo 46
5.2 Indentation 48
5.3 Language extensionso 49
5.4 Performance 50
55 Futureworko 51
6 Conclusion 52

List of Figures

© 00 J O U W N

SR R W W W W W W W W W N NN DN DN NN DN e e e e e e
N —m O © 00 1O Ui W HFHF O OWOWNOU Uik W rFE O O©OoOo Ut i Wi~ O

Notational conventions L. 10
Variable and constructor identifiers 10
Symbol identifiers oo 11
Keywords that isnot reserved 11
Reserved keywords in Haskell98 12
Module declarationo Lo 12
Import declaration Lo oo 13
Data declaration 0oL 14
Newtype declaration 14
Type declaration 14
Simple let expression 15
Lexing and parsingo 16
Lexing and parsing with layout 19
Token data typeo 20
Module data type 30
Rule for parsing amodule 31
Module declaration data type L. 31
Rule to parse a module declaration 32
Rule toparseexports. oL 32
Rule to parse several imports L. 34
Three imports separated by ; oL 35
Rule to parse single import L. 35
Rule to parse top declarations 36
Data constructor for data declarations 36
Rule to parse a data declaration, ... 37
Rule to parse a rhs data declaration 37
Ruletoparsea GADT 38
Rule to parse deriving Lo 38
Data constructor for types oL 38
Rule to parse a type declaration 39
data constructor for a class declaration 39
Data constructor for an instance declaration 40
Rule to parse lhs of a function. 40
Right hand side of a function 41
Parse guard part of functions 41
Parse equal part of a function 42
RHS of type signatures L. 42
Parsing expressions Lo Lo 43
Parsing let expressions L oo 43
Bad Process 46
Highlighting of Module declaration and imports 47
Highlighting of data declarations, data constructors and type con-

structorso 48

43
44
45
46

Highlighting of guards, let expressions and hiding as variable . . 49
Function to get indentation suggestion 50
Indentation of functions 50
Comparison between old parser, that only parsed parenthesises,

and the new more precise parser 51

1 Introduction

1.1 Motivation

Haskell is a functional programming language that makes use of lazy evaluation
(call-by-need). It supports higher-order functions and currying. Haskell code is
easy to structure well and the code can often be reused due to the support of
higher-order functions and laziness (Hughes, 1989).

Today many programming environments that support Haskell development,
provide user feedback interactively. The most common problems with such
environments is that they

e Use too much memory and/or CPU time due to the complex parsers
and compilers being used. Also they often re-parse everything instead
of reusing previous information.

e Spend time on parsing code that is not necessary to parse, re-parsing
things that have not been changed should not be necessary, instead the
earlier abstract syntax tree should be reused as much as possible.

e Use regular-expression based parsers that can not recognize complex struc-
tures, this does not give as precise information as wanted.

e Compile parts or all of the code which give very precise information, but
with the drawback that the feedback is usually delayed since compiling can
take some extra time. Also the the parser in the compiler is not robust
enough and often does not recover from errors.

These problems force the user to choose between precise feedback, but with
a delay and probably only one of many errors will be found at first run or
imprecise information available after each keystroke.

2 Aim

Our parser should give feedback to the user by combining the strengths of the
existing solutions, but without their drawbacks, it should provide:

Feedback online the feedback should be available immediately, at each keystroke.
Precise feedback the parser should be able to recognize complex structures.
Robustness the parser should cope with errors and recover from them.

Encapsulation the errors should be encapsulated so that everything after an
error can be highlighted correctly.

The technical goals of the parser in this project are

Parse Haskell98 being able to parse most of the Haskell98 syntax.

Incremental parser the existing incremental parser library that is a part of
Yi should be used.

Available in Yi the parser should be available as a mode in Yi (sec.3.3).

3 Background

3.1 Haskell

Even though the reader of this thesis is expected to have basic knowledge of
Haskell, details of the syntax are important in this thesis. Therefore this part
of the thesis will be a short introduction to the parts of Haskell that will be
parsed in this thesis. The information is collected from the Haskell98 revised
report (Peyton Jones, 2003).

The most widely used compiler, the Glasgow Haskell Compiler (of Glasgow,
n.d.), will be used in this project. Haskell is based on the Haskell98 report
(Peyton Jones, 2003) and since then several extensions has been proposed and
implemented. We aim to parse Haskell98 with some of the extensions provided
by GHC.

The notational conventions, used in the Haskell98 report (fig. 1) will be used
in this report to describe the syntax of Haskell.

[pattern] optional

{pattern} zero or more repetitions

(pattern) grouping

patl | pat2 choice

pat < pat’ > difference -- elements generated by pat
except those generated by pat’

Figure 1: Notational conventions

3.1.1 Identifiers and symbols

Variable and constructor identifiers (fig. 2) are distinguished by their first char-
acter. If the first character is capitalized, then the token is a constructor iden-
tifier and if not then it is a variable identifier.

varid — (small { small | large | digit |'}) < reservedid >
conid — large { small | large | digit | '}

Figure 2: Variable and constructor identifiers

10

In this thesis qualified variable and constructor identifiers will be treated as
usual variable and constructor identifiers, instead of as in the haskell98 report,
which treats them separately.

symbol — ascSymbol | uniSymbol < special | —|:| " |’ >

ascSymbol = V| # 8| % | & | x|+]|o|/|<|=|>]|7]@
NTTH =~

special = () [10T TL1Y

uniSymbol — any Unicode symbol or punctuation

varsym — — (symbol { symbol | :}) < reservedop | dashes >
consym — ({ symbol | :}) < reservedop >

reservedop — .. |: | |=| A||[«—|—=| Q| ~|=

Figure 3: Symbol identifiers

Infix functions (‘function) are treated as varsym and infix data constructors
are treated as consym in this thesis.
3.1.2 Comments

A comment in Haskell can be placed anywhere and has the following structure

comment — dashes [any < symbol > { any }] newline
dashes — - {-}

opencom — {—

closecom — —}

3.1.3 Reserved words

Haskell98 only has 21 keywords! which are not allowed as names for values or
types (Hudak, Hughes, Jones and Wadler, 2007). But it has an exception, three
of the keywords is not reserved. These quasi-keywords can be used as regular
identifiers. A list of the quasi-keywords can be viewed in fig. 4.

as | qualified | hiding

Figure 4: Keywords that is not reserved

These quasi-keywords pose an interesting problem: they should be high-
lighted as keywords when used as such and as ordinary Identifiers when not.

1Compared to Javas 50 keywords

11

We will show how to incrementally parse these quasi-keywords and then high-
light them appropriately in section 4.4.6.
The reserved words in Haskell are listed in fig. 5.

reservedid — case | class | data | default | deriving | do | else
| if | import | in | infix | infix] | infixr
| instance | let | module | newtype | of | then
| type | where | _

Figure 5: Reserved keywords in Haskell98

3.1.4 Module declaration

In a module, only comments and pragmas are allowed above the module dec-
laration. The module declaration specifies what the module should export,
everything else will be internal only. The module declaration is optional and if
not declared, everything in the module is exported. The structure of a module
declaration can be seen in fig. 6.

moddecl — module conid [exports]| where

exports — (exportl, ..., exportn [,]) (n>0)
export — var
| conid [(..) | (cnamel, ..., cnamen)] (n = 0)
| conid [(..) | (varl, ..., varn)] (n > 0)

| module conid
cname — var | con
var — wvarid | (varsym)
con — conid | (consym)

Figure 6: Module declaration

The conid after the module keyword, represents the name of the module
fig. 6. The exports, which are optional, are separated by commas and has an
optional trailing comma. If no exports are given, everything will be exported
and if the export field is empty, nothing is exported.

3.1.5 Imports

The imports follow directly after the module declaration if there is one, otherwise
imports must be located in the beginning of the module.

An example of the import structure can be seen in fig. 7, a qualified import
is hidden but its exported content can instead be reached by qualifying. The as

12

impdecl — import [qualified] conid [as conid] [impspec]
impspec — (importl, ..., importn [,]) (n>0)

| hiding (importl, ...,importn [,]) (n = 0)
import — var

| tycon [(..) | (cnamel, ..., cnamen)] (n > 0)
| tycls [(..) | (varl, ..., varn)] (n>0)
cname — wvar | con
var — wvarid | (varsym)
con — conid | (consym)

Figure 7: Import declaration

quasi-keyword used in imports changes the name locally of the imported module.
The hiding quasi-keyword is used to hide some of the exported content of the
imported module. The import list at the end specifies what to import or, if the
hiding quasi-keyword is used not to import. The import list is separated by
commas, with an optional ending comma. If no import list is given, everything
will be imported, and if the list is empty, nothing will be imported.

3.1.6 Declarations (top)

A data type can contain data constructors, which like type constructors is iden-
tifiers with a beginning capitalized character, type constructors and type vari-
ables. fig. 8 describes how a data type can be declared. The right hand side
(rhs) begins after the equal sign.

newtype allows wrapping a type synonym in a constructor so it can be
matched by pattern matching. It does not add any overhead to the run time,
like data, since it will be replaced at compile-time. The syntax used can be
seen in fig. 9.

A type synonym can be declared like in fig. 10. The first conid will be the
name of the type synonym.

3.1.7 Expressions

Haskell has several different expressions, but in this thesis only let expressions
has been considered important to parse specially, this will be further described in
section 4.4.15. A let expressions allows the user to declare several declarations,
ending with an expression. In fig. 11, for example the two declarations a = 2%2
and b = 4 x4 ends in the in part which is an expression, in this case a * b so the
result of this calculation is 64. The ending in is optional inside of a do block.

13

datadecl — data [context =] simpletype = constrs [deriving |
simpletype — conid varid1 ... varidk (k>0)

constrs ~ — constrl | ... | constrn (n>=1)
constr — con [!] atypel ...[!] atypek (arity con =k, k > 0)
| (btype | latype) consym (btype | latype) (infix consym)
| con { fielddeclt, ..., fielddecln } (n > 0)
fielddecl — — wars :: (type | latype)
deriving — deriving (conid | (conidl, ..., conidn)) (n = 0)
type — btype [— type | (function type)
btype — [btype] atype (type application)
atype — gtycon
| varid
| (typel, ..., typek) (tuple type , k > 2)
| [type | (list type)
| (type) (parenthesised constructor)
gtycon — conid

10
|]

| (=)
1G4

unit type)

list constructor)
function constructor)
tupling constructors)

PRy

Figure 8: Data declaration

ntypdecl ~— newtype [context =] simpletype = newconstr [deriving |
newconstr — con atype

| con {var :: type }
sitmpletype — conid varidl ... varidk (k > 0)

Figure 9: Newtype declaration

typedecl — type simpletype = type

Figure 10: Type declaration

3.2 Layout

In order to separate sequential commands most languages use semicolon (Hudak
et al., 2007), Haskell does not have sequential commands but there is a need
to separate declarations. The declarations are usually separated by the layout
which makes the syntax a bit less cluttered. In Haskell the indentation require-

14

let a =2%2
b=4x4
in a*xb

Figure 11: Simple let expression

ment can be replaced, by explicit structuring, using ; and { }. But this is usually
not used, it is mainly intended to simplify machine generation of Haskell code
(Hudak et al., 2007; O’Sullivan, Stewart and Goerzen, 2008, Chap. 9).

The Haskell98 report states following about the layout in Haskell:

The meaning of a Haskell program may depend on its layout. The
effect of layout on its meaning can be completely described by adding
braces and semicolons in places determined by the layout. The
meaning of this augmented program is now layout insensitive.

The effect of layout is specified in this section by describing how to
add braces and semicolons to a laid-out program. The specification
takes the form of a function L that performs the translation. The
input to L is:

A stream of lexemes as specified by the lexical syntax in the Haskell
report, with the following additional tokens: If a let, where, do, or
of keyword is not followed by the lexeme {, the token {n} is inserted
after the keyword, where n is the indentation of the next lexeme if
there is one, or zero if the end of file has been reached. If the first
lexeme of a module is not { or module, then it is preceded by {n}
where 7 is the indentation of the lexeme. Where the start of a lexeme
is preceded only by white space on the same line, this lexeme is
preceded by <n> where n is the indentation of the lexeme, provided
that it is not, as a consequence of the first two rules, preceded by

{n}.

3.3 Introduction to Yi

Yi (Bernardy, 2008; Stewart and Chakravarty, 2005) is an editor, much like
Emacs (Inc., n.d.) or Vim (Moolenaar, n.d.), but written in Haskell, with the
goal of beging simple to configure and extend using Haskell. It comes with the
option of using same key maps as Emacs or Vim.

Some of the provided features for Haskell editing in Yi is parenthesis match-
ing, layout-aware edition, a GHCi interface and a cabal interface. Yi provides
syntax highlighting using information from the lexer, highlighting keywords and
Type/Data constructors in Haskell code. It also comes with support for high-
lighting several mainstream languages, such as C++, C, Perl and Python. A
Javascript parser and lexer (Dogan, 2009) will be added in the next release.

15

Yi can statically or dynamically configure itself via a configuration file, which
is compiled. In the configuration file, almost anything can be configured, simi-
larly to the configuration file in xmonad (Stewart and Sjanssen, 2007).

Currently two frontends is supported, one using vty that only requires a
terminal application and one using pango? that is under heavy development.

3.3.1 Lexing

Yi uses the Alex lexer generator(Marlow, n.d.) to produce a lexer that produces
tokens. The produced tokens are used to feed the parser, which will produce an
Abstract syntax tree (AST) this is visualized in fig. 12. The picture abstracts
from the incremental behaviour details. The AST is then used in the end to
highlight the text in a ”highlighter .

Text

Lexer

Tokens

Parser

/
AST

Highlighter

Nice text

Figure 12: Lexing and parsing

Yi has an extra step when handling Haskell code (fig. 13) that inserts tokens
marking the layout specifics such as where a block begins and ends.

3.3.2 Modes

The different parsers and lexers available in Yi are used by different so called
modes that can be switched on and off via a simple key binding, similarly as in
Emacs. Yi automatically sets mode depending on the file extension of the file.
Files ending with hs will start with a haskell mode as default.

3.3.3 Highlighting

Apart from the different parse/lexer modes, the user also can choose from dif-
ferent sets of highlighting themes. It is easy to add a theme, all that needs

2From gtk2hs http://www.haskell.org/gtk2hs/

16

to be done is implementing the functions that take a token and colors it. A
theme can be implemented completely in just a couple lines of code. The Uls
support RGB colors and a color can be combined with different styles like italic
and bold, coloring of the background and foreground of the text. The available
number of colors and different styles depend on what frontend is being used.

In Yi the result from the parser is used when highlighting the code, Yi uses a
stroke function and each structure that is used must be matched and highlighted
in some way. In the stroke function errors marked by the parser are detected
and highlighted as such. Yi provides different stroke colors that is dependant
on which highlighting mode the user has chosen.

3.4 Parser Combinators

In this thesis an existing incremental parser library is used (Bernardy, 2009).
The parser parses incrementally and caches earlier results so it will not have
to reparse from the beginning at each keystroke. The parser library provides
a solution to gracefully recovery from errors in the input. The parser library,
which is inspired by the “Polish parser, step by step” article (John and Swierstra,
2003), implements similar combinators as described in that article.

e data Parser s a where
Pure ::a — a — Parser s a
Appl :: Parser s (b — a) — Parser s b — Parser s a

Bind :: Parser s a — (a — Parser s b) — Parser s b

Look :: Parser s a — (s — Parser s a) — Parser s a
Shif :: Parser s a — Parser s a

Empt :: Parser s a

Disj :: Parser s a — Parser s a — Parser s a

Yuck :: Parser s a — Parser s a

Enter :: String — Parser s a — Parser s a

One can build parsers using the above constructors, but it is often more
convenient to use standard Haskell mechanisms such as Alternative and
Applicative. The Parser type implements these classes in the following
way:

instance Applicative (Parser s) where
(<*>) = Appl
pure x = Pure x x

The (<*>) function performs sequential application and pure lifts a value
to a Functor. The Functor instance of the Parser data type is simply

17

e instance Functor (Parser s) where
fmap f = (pure f<x>)

That gives us the fmap function, mapping a function on the given Functor.
fmap has a synonym operator <$> that will be used in this thesis.

e instance Alternative (Parser s) where
(<|>) = Disj
empty = Empt

Disjunction lets us give a choice between possible parses, the disjunction
is a general choice (Claessen, 2004) disjunction. The operator will force
the parser to consider several possible paths if both possible paths can be
valid more than zero tokens. As later will be described there are ways to
affect when a path is discarded, if another one should be preferred.

e many, some :: Parser s a — Parser s [a]
many v = some v <|> pure []
some v = (1) <$> v <> many v

many applies the same parser zero or more times. some applies the same
parser one or more times.

o symbol :: (s — Bool) — Parser s s

symbol takes a function returning True if the token given should be shifted
in the parser.

o testNext :: (Maybe s — Bool) — Parser s ()

testNext peeks at the next token of the input and produces a parser if
the given function returns True for the token, otherwise another parse is
chosen if possible. If no other parses are available the only option is to
fail.

18

e recover With :: Parser s a — Parser s a
recover With = Enter "recoverWith" o Yuck

This rule should be used to recover from unexpected input, when a parser
might fail. If the parsing rule is in a disjunction with the recover With
parser, the recover With parser will be chosen to prevent a crash. Also the
rule will insert a trace for debugging purposes. If only paths with Yuck is
possible, then the one with least numbers of Yuck will be chosen. If the
number of Yuck are the same after a threshold then one of the possible
paths is chosen at random. This enables possibilities to write a parser that
prefers something above something else, as long as the most preferable has
least number of Yuck. The Enter data constructor is used to insert a trace
in the parser, in this function the string "recoverWith" will be inserted.

4 The Haskell Parser

4.1 Overview

As earlier described, the text is first lexed into tokens, after this Yi inserts
layout tokens into the list of tokens (fig. 13). The tokens that now contain
information about the layout of the program can be parsed in the incremental
parser, of course also the lexing and layout is done incrementally. The resulting
AST can after the parsing be edited as will be shown in later sections. Finally
the AST is used in a ”highlighter“ that adds color and style preferences such as
if the text should be bold or italic.

Text
Lexer

Tokens

Layout

Tokens & Layout info (as Tokens)

Parser

AST

Highlighter

Nice text

Figure 13: Lexing and parsing with layout

19

4.2 The lexer

As mentioned earlier Yi uses the Alex lexer generator, and has a lexer (Aho,
Lam, Sethi and Ullman, 2006) for Haskell. The lexer divides the Haskell source
code into different tokens listed in fig. 14.

data Token = Number | CharTok | StringTok | Varldent | ConsIdent
| Reserved | Reserved Type | ReservedOp ! OpType | Special Char
| ConsOperator String | Operator String
| Comment ! CommentType
| THQuote
| CppDirective | Unrecognized

Figure 14: Token data type

The tokens being used in the parser are

e Varldent represents variable identifiers (varid)
e Consldent can be data types, data constructors etc. (conid)

e Reserved token contains all reserved words, like keywords. In Yi all key-
words belongs to this group, including those that only are quasi-keywords.
(reserved < as, qualified, hiding>).

e ReservedOp all of the predefined operators (reservedop)

e Comment this token contains Open, Close and Line to be able to match
closing comments, opening and closing comments are separated. The
matching of opening comment and closing is done in the lexer. This is im-
portant in the parser because of the need to allow comments everywhere.

o CppDirective Are as comments allowed everywhere and must be handled
by the parser.

e Special contains layout based information that is inserted after the lexing
phase.

e ConsOperator (consop) and VarOp (varop) together with ReservedOp
(reservedop) they contain all operators.

Of course all tokens are used, but most of them are not relevant to the parser
and are matched uniformly.

The lexer used by Yi had to be extended during this project in order to make
it more precise. Since the previous parser in Yi only had parenthesis matching,
there was no need to separate keywords etc. from each other. But since this
project aims at parsing more precisely it is important to be able to identify

20

different keywords (for example module and import), which is not possible
without making the lexer more precise.

The following changes were made to the lexer in order to make it precise
enough for the goal of this thesis

instance, class, type, data, newtype, deriving, let, in, where, import,
qualified, as, forall and module got their own data constructors, the construc-
tors were named Instance, Class...Instead of as previous being classified as
Reserved Other they now belongs to Reserved Instance, Reserved Class etc.

In Haskell an ending # is allowed after ConsIdent and Varldent when using
the magicHash extension, this was previously not implemented in the lexer, but
was implemented during this project in order to parse it correctly. Previously
the following code

module A # where

was lexed into

(Reserved Other) Consldent (Operator "#") (Reserved Other)

but now it is lexed into

(Reserved Module) Consldent (Reserved Where)

4.3 Layout

Since Haskell is indentation sensitive, Yi has a Layout handler that helps sepa-
rating the code into blocks based on the indentation. The layout is done after
lexing the source code. A block is identified by a couple of added special to-
kens, which do not occur normally in Haskell. Special ><’ (representing {), that
begins a block and Special >>’ (representing }), that ends a block.

The declarations are separated by the token Special * .’ (representing ;). A
block follows the keywords where, let, do and of. As an example after the
lexing and layout phase the following code

module A where
times a = a x a

add ab=a+b

will look like this in tokens

21

(Special ><?)
varldent Consldent (Reserved Where)
(Special *<?)
Varldent Varldent (ReservedOp Equal) Varldent Operator Varldent
(Special *.?)
Varldent VarIdent Varldent (ReservedOp Equal)
Varldent Operator Varldent
(Special >>?)
(Special >>?)

The code has more than one declaration (in this case two functions), so they
are separated by the Special ’> .’ token. A thing to note is that comments in
Haskell do not need to be indented, so the layout does not care about comments.
This will affect the parsing as later will be shown in section 4.4. As an example
one can look at how the layout of these different code snippets are interpreted.

module A where
-- comment maybe times is not needed
times a = a * a

the layout will do the following

(Special ><?)

varldent Consldent (Reserved Where)
(Comment Line)

(Special ><?)

Varldent Varldent ...

In other words a where clause can be followed by some comments and then
maybe a block. Another thing with the layout is that empty blocks is never
created so consider removing the times function, then the layout would give
following result.

(Special *<?)

varldent Consldent (Reserved Where)
(Comment Line)

(Special >>?)

22

After a correct module declaration one can expect, either a block, a comment
maybe followed by a block or nothing. During this project a couple of bugs has
been detected in the layout handler and these have been fixed. An example of
what has been changed, is that comments were taken into consideration in the
layout when this project started.

The layout handler does not consider the already explicit layout that a user

3

can provide, like GHC does®. A consequence of this is that the indentation

information can be duplicated when explicit structuring is used.

4.4 The Haskell parser

The parser uses some different data structures to wrap the parse result in, they
have been divided into 3 different parts. One for the module (PModuleDecl)
declaration, one for imports (PImport) and one that contains everything else

(Ezp).

4.4.1 Basic Parsing Combinators

Some basic parser combinators has been implemented and will be used in later
are:

o sym :: (Token — Bool) — Parser TT TT
sym f = symbol (f o tokT)

sym use the previously introduced symbol function to parse tokens of type
TT (Tok Token).

e cxact :: [Token] — Parser TT TT
exact = sym o (flip elem)

exact parses, if possible, one of the tokens in the given list.

o pEmpty :: Applicative f = f [a]
pEmpty = pure []

pEmpty lifts an empty list to be part of the Applicative class.

3GHC only inserts layout information when the user has not provided any

23

e please :: Parser TT (Exp TT) — Parser TT (Exzp TT)
please = (<|>) (PError <$> (recover With $ pure $ newT * 1)
<> pure (newT *1?)
<> pEmpty)

The please combinator can be used to prevent the parser from failing, if
no other option is available it will use recover With to recover from the
failure. If several parses containing Yuck are available in a disjunction,
then the one with the least number of Yuck will be chosen. This function
should always be used as an option if some token is to be expected, as an
example, if the expected token is Special *)’ then please could be used in
the following way please $ pAtom $ exact [Special *)’]. If something else
than the Special ’)° token appears, the error will be marked by inserting
the token Special *>!’.

During this project the following name convention has been used, rules
parsing something begins with p, rules parsing something using recover With
begins with pp (as in please parse).

data Exzp t = ...
PError { errorToken :: t
, marker it
, comments :: [t]

}

PError takes 2 tokens and a list of comment tokens, the first is the token
to parse, the second is always the Special * !’ token to indicate that an
error has occurred. At last comes a list of comments that might follow
the error.

e pErr:: Parser TT (Exp TT)
pErr = PError <$> recover With (sym $ not o uncurry (V) o (&&&)
isComment
(= CppDirective))
<> pure (newT *17)
<*x> pComments

pErr can be used to parse anything and marks the parsed token with the
PFError constructor. This rule is mostly used (sometimes in other rules) to

24

collect all errors on a line (using many). The first token in PError should
never be a comment, comments are never considered being an error.

pAtom, ppAtom :: [Token]| — Parser TT (Exp TT)
pAtom = flip pCAtom pComments

pCAtom :: [Token] — Parser TT [TT]| — Parser TT (Exzp TT)
pCAtom r ¢ = PAtom <$> exact r <x> ¢

pAtom is a rule to parse one of the tokens in the given list, followed by
many comments (pComments). The reason for the structure of pAtom
will be further explained in section 4.4.2. ppAtom is almost the same as
saying please o pAtom but it is implemented in the following way:

ppAtom at = pAtom at <|> recoverAtom

recoverAtom :: Parser TT (Exzp TT)
recoverAtom = PAtom <$> (recover With $ pure $ newT *!?)
<x> pEmpty

This is done since the PAtom data constructor is expected. If ppAtom
would be defined with pAtom i.e. please o pAtom it would end up with
the Error data constructor if the next token was another one than the
expected. This would affect the pattern matching used later when setting
the syntax highlighting. If the please o pAtom would be used, two patterns
can occur, either the PAtom or the PError constructor.

pTestTok :: [Token] — Parser TT ()
pTestTok f = testNexat (uncurry (V) o (&&&) isNothing
(flip elem f o tokT o fromJust))

pTestTok tests if the next token to parse is in the given list, if it is then the
parse will succeed without shifting any tokens. This function will return
a parser even if there are no more tokens to be parsed, in all other cases
it will fail. The isNothing is used so that the parser does not fail if the
result of the parser is Nothing.

pOpt :: Parser TT (Exp TT) — Parser TT (Exzp TT)
pOpt 7 = Opt <$> optional T

25

When something optional is to be parsed, it is wrapped in the Opt con-
structor. The optional function, from the Applicative class, is used. The
function simply parses the optional thing, or nothing and has the type
optional :: Alternative f = f a — f (Maybe a)

pToList :: Applicative f = f a — f [a]
pToList arg = (:) <$> arg <x> pEmpty

pToList put instances of the Applicative class into a list, the element
provided will be the only element in the list.

pSepBy :: Parser TT (Exp TT) — Parser TT (Exzp TT)
— Parser TT [Exp TT]
pSepBy p sep = pEmpty
<|> (:) <$> p <*> (pSepByl p sep <|> pEmpty)
<|> pToList sep -- optional ending separator
where pSepByl r p’ = (:) <$> p’ <> (pEmpty <|> pSepByl p' r)

The pSepBy rule parses non-terminals (p) separated by some other (sep).
Usually parsers use an sepBy rule that requires the pattern p sep p but
pSepBy allows the pattern to end with a sep token (p sep).

This rule can as an example be used when parsing the export list in a
module declaration or any function that is a list separated by a token
with an optional ending separator. Exports are separated by a comma
and as stated in the Haskell98 report the export list can have an optional
ending comma.

pParenSep :: Parser TT (Exp TT) — Parser TT (Exzp TT)
pParenSep = pParen o (flip pSepBy pComma)

Since there are many occurrences where a list is separated by comma and
placed inside of parenthesises we write a function for this pattern.

pCParen, pCBrace, pCBrack
:: Parser TT [Exp TT| — Parser TT [TT] — Parser TT (Exp TT)
pCParen p ¢ = Paren <$> pCAtom [Special > (*] ¢
<> p <*> (recoverAtom <|> pCAtom [Special *)] c)

26

pCParen is used to match parenthesises, they are wrapped in the Paren
constructor, comments can be allowed after the parentheses in this parse
rule. The ending parenthesis is recognized by using recoverAtom.

The rules used to match braces and brackets are named pCBrack and
pCBrace, they are constructed in the same way as pCParen. Brackets
and braces share the same constructor as parentheses since they have
the same behaviour and should be matched in the same way. To simplify
there also exist pParen, pBrack and pBrace rules that parse with following
comments.

pParen, pBrace, pBrack :: Parser TT [Exp TT]| — Parser TT (Exp TT)
pParen = flip pCParen pComments

startBlock, endBlock, nextLine :: TT
startBlock = Special <’

endBlock = Special *>°

nextLine = Special > .’

These rules are just a short hand for the layout matching.

pBlockOf' :: Parser TT a — Parser TT a
pBlockOf' p = exact [startBlock] x> p <x ezact [endBlock]

The above will parse p inside of a layout block.

pBlockOf :: Parser TT [(Exzp TT)] — Parser TT (Exzp TT)
pBlockOf p = Block <$> (pBlockOf' $ pBlocks' p)

pBlocks' :: Parser TT r — Parser TT (BL.BList r)
pBlocks' p = p ‘BL.sepByl* exact [nextLine]

pBlockOf parses several p separated by nextLine tokens, inside of a layout
block.

27

e data Fapr t =

| TC (Expr t)
| DC (Expr t)

Is only used to wrap an expression, to mark that it should be colored with
type constructor style or data constructor style.

4.4.2 Layout and error-recovery strategy

Haskell syntax depends on the indentation as discussed in section 3.2

ida=a
times b c=bx*c

If the layout information is not taken into account it would be impossible to
see where the first function ends and where the second begins since times can
be another argument of id. A similar layout problem occurs when something is
parsed and an error in the code is discovered, one would want the parser to show
only the errors and not mark everything after the error as an error. Consider
the following code.

module A b where
import D as C

The module has an error, namely the b character. When the parser comes
to this point it expects either a parenthesized export list describing what the
module exports, or the where keyword. But instead it gets a b character, now
the parser must decide where the erroneous code ends. The reader with some
Haskell experience will see that the following import is correct and should not
be highlighted as an error, but the parser does not know how many tokens to
shift. In other words the Parser needs something that indicates when to stop
parsing erroneous code, one way would be to only parse one erroneous token,
but there might be several of them. The solution to this problem is to assume
that the layout information that has been inserted into the set of tokens always
is correct.

A sound approach is to let the parser parse anything after an error as an
error until the "end of the line“ is reached. This is where the layout comes
into the picture. Since information from the layout contains information about
where a line ends, this can be used to make the parser shift tokens until it gets

28

to the nextLine token. In this way the above code will highlight the b and
where as errors and the follwing imports will be parsed correctly.

4.4.3 Handling comments

Comments in Haskell can appear anywhere in the code, and the parser must
be able to cope with this. It is not possible to just discard the comments like
compilers do, since the user expects the comments to be highlighted as comments
in the code. Another problem when ignoring comments are that when an error
is found, if the comments are not taken into consideration they would end up
highlighted as an error, or not highlighted at all, but a comment should never
be considered being an error. Both comment blocks and comment lines should
be allowed anywhere, because of this the isComment rule was implemented, in
order to be able to match any kind of comment.

One approach to this problem would be to simply split the list of tokens
from the layout handler into tokens that are not comments and tokens that
are comments and then in the end interleave the list. The problem with this
approach is to interleave the list in the end without forcing a parse of the entire
file. Consider the case when there is no comments. In order to interleave the
two lists the head of the comment list must be checked, but if the parsed file
has only one comment located in the end of the file, then all of the file must be
parsed to see the head of the comment list.

Instead the solution used is to at first match the given token and after this
match many possibly following comments, this is a list and can be empty it is
done in the pAtom rule.

The solution used in this thesis to parse comments has one drawback, it is
more costly to parse something followed by many comments than to parse some-
thing that can not have following comments. This will increase the number of
possible parses and will affect the performance when Yi is used. In section 4.4.15
we present a solution that can be used to partially remove this drawback.

4.4.4 Parsing a module

The parsing can be divided into several parts that is parsed by their own parse
rules. A file may begin with comments, module declaration, imports, functions,
data declarations, type etc. what is allowed to follow depends on what comes
before.

The data types in the parser is divided into 3 different categories, module,
imports (imports are only allowed above the top declarations) and a body,
containing the top declarations. The PModule data type is described in fig. 15.

It describes the different forms a Haskell module can take

e The module contains some comments maybe followed by some source code.
e The module contains comments, module declaration and possibly a body.

e The module contains a body, maybe with imports and some more content.

29

data PModule ¢
= PModule { comments :: [t]
, progMod :: (Maybe (PModule t))
}

| ProgMod {modDecl :: (PModuleDecl t)

, body :: (PModule t)
}
| Body { imports :: [PImport t]
, content :: (Block t)

, extraContent :: (Block t)

}

deriving Show

Figure 15: Module data type

The data constructor Body contains two blocks after the list of imports, this
is because of the layout done before parsing. If the layout after the module
declaration is wrong, some code will be left in an own block outside of the
module and it will not be highlighted. An example of such a layout is

module BL where
times = ()
add = (+)

which is transformed to the following list of tokens after layout is processed:

(Special ><?)

(Reserved Module) Consldent (Reserved Where)
(Special ><?) Varldent (ReservedOp Equal) ... (Special >>?)
(Special ? .?) Varldent (ReservedOp Equal) ...

(Special >>?)

but with the correct indentation all of the body is in the where block

(Special *<?)

Varldent .. -- function times
Varldent .. -- function add

(Special >>?)

(Special >>?) -- end of module block

30

The example with bad layout can not be compiled, but the parser should still
parse everything outside of the block and if wrong then show this by marking it
as an error. This layout “problem” occurs also in where blocks after functions,
but as will be shown later this is solved in another way.

The content of a module, like data declarations, functions etc. all belongs to
the Fzxp type, this since they can appear anywhere below the module declaration
and imports without any order. Another way to do it would be to separate top
declarations and expressions into different types.

pModule :: Parser TT (PModule TT)
pModule = PModule <$> pComments <*> optional
(pBlockOf'" (ProgMod <$> pModuleDecl
<x> pModBody <|> pBody))

Figure 16: Rule for parsing a module

The pModule rule (fig. 16) parses many comments, followed by an optional
block of code containing maybe a module declaration (pModuleDecl) followed
by a body (pModBody if there is a module declaration or pBody if there is no
module declaration).

4.4.5 Module declaration

To parse a module declaration, the first token must be Reserved Module, which
represents the keyword module. After the module keyword a Consldent (the
module name) is parsed.

The data type representing the module declaration has the form of fig. 17

data PModuleDecl t

= PModuleDecl { keyword o (PAtom t)
, modName o (PAtom t)
, exports = (Ezp t)
, whereKeyword :: (Exp t)

}

deriving Show

Figure 17: Module declaration data type

PAtom t is the following shorthand

type PAtom t = Exp t

31

pModuleDecl :: Parser TT (PModuleDecl TT)
pModuleDecl = PModuleDecl <$> pAtom [Reserved Module]
<> ppAtom [Consldent]
<> pOpt (pParenSep pExport)
<> ((optional $ exact [nextLine]) x>
(Bin <$> ppAtom [Reserved Where])
<x> pMany pErr) <x pTestTok elems
where elems = [nextLine, startBlock, endBlock]

Figure 18: Rule to parse a module declaration

When another token than the ConslIdent occurs after the module keyword,
an error token will be inserted (due to the usage of ppAtom). After this follows
optional exports, which is then followed by a where keyword that opens the
body of the module. Before the end, many errors is allowed.

Three tokens can end a module declaration

nextLine if the nexrtLine token is parsed the declaration must be malformed,
since the only way a nextLine token can appear at the end is if there is
no where clause.

startBlock if the token is startBlock the declaration have a where clause that
is non empty, or some other keyword that opens a layout block.

endBlock if the token is endBlock, the module declaration and the tokens
above it is the only content of the module.

pEzport :: Parser TT (Exp TT)
pExport = (optional $ exact [nextLine]) x> please
(pVarld
<|> pEModule
<|> Bin <$> pQuarsym <x> (DC <$> pOpt expSpec)
<|> Bin <$> (TC <$> pQtycon)
<> (DC <$> pOpt expSpec))
where pDotOp = (ReservedOp $ OtherOp "..")
expSpec = pParen ((pToList $ please (pAtom [pDotOp]))
<|> pSepBy pQuarid pComma)

Figure 19: Rule to parse exports

The exports are inside of parentheses and separated by commas, each export
can be one of the following:

32

Varld a function name

An exported module

A type constructor operator (extension to Haskell98) with optional ex-

ported data constructors
e A type constructor with optional exported data constructors

Before the open parenthesis an optional nextLine is parsed, this is due to
the layout information. In Haskell98 there is no need to indent the exports so
the following layout is fine

module Add
(add) where

The tokens given to the parser will have the following structure

(Special *<?) (Reserved Module) ConsIdent
(Special *.?) (Special > (*)..

The same thing occurs when the where clause is located at the beginning
of a new line, this is covered by having ((optional $ ezact [nextLine])*> before
the expected where. This solution has a drawback, now the errors can stretch
over three lines instead of the single one could expect. But the solution is
better than showing that something is wrong when it is not, which would be
the alternative. Of course it would be possible to decide that not indenting
inside of the module declaration, is bad style and should be considered being
an error even if it compiles fine.

After the optional nextLine the please function is used, due to the following
possible scenario

module Add (
where

Since there is an opening parenthesis the parser will try to parse an export
the pSepBy function allows empty exports, so this would have been an ordinary
error if the layout of the where clause were different. The example will have the
following token sequence after the Add ConsIdent (Special > (*) (Special *.”)
(Reserved Where) and because of the (Special ’.?) an export is expected and
if none is found, then the parser will fail without any possibility to recover. But
by using please the parser inserts the Special !’ and recovers instead.

33

The recover With function when used here does not shift a token, instead
it inserts a token to mark the error, because of this the error at the end is
needed, consuming all input until it receives an end of the declaration token
nextLine. This will have the effect that if someone writes an error after the
module keyword, like following

module var (list) where

Everything following the module keyword will be parsed as an error, since
the var does not match anything after the expected Consldent. On the other
hand there is an advantage, if the programmer forget the ConsIdent like follow-
ing code snippet

module (list) where

The parser will correctly interpret the exports and the where keyword,
ending with a parse containing the extra token marking something went wrong,
now it will be possible to mark the error by only highlighting one token.

4.4.6 Imports

The number of imports in a file is zero or more, fig. 20 describes how to parse
several imports. The import declarations are separated by the nextLine token.
endBlock will only occur if there is nothing following the imports, for example
if the only content in the module is a couple of imports the last one will be
finished by an endBlock token. The parser fails to recognize the case when an
import ends with a ; like fig. 21, which is syntactically correct. The imports
are parsed in this way since they are not allowed everywhere, imports are only
allowed before the top declarations. Imports should be marked as errors if they
occur at other places of the module.

pImports :: Parser TT [PImport TT]
pImports = many (pImport
<x pTestTok pFol
<* (optional $ exact [nextLine]))
where pFol = [nextLine, endBlock]

Figure 20: Rule to parse several imports

One import (fig. 22) is parsed by first matching the keyword import, after
this comes an optional qualified quasi-keyword. The Consldent is required and

34

import Data.List; import Data.Sequence;
import Data.Data

Figure 21: Three imports separated by ;

is parsed using the ppAt, so that the recover With function marks if is is missing.
It is optional to have a synonym for the import, but if the as quasi-keyword is
parsed, the following token must be a Consldent.

The import specification (pImpSpec) might contain the hiding quasi-keyword
before the actual specification and this is allowed by using optional. If any errors
follows, they will be caught by one of the three optional pMany pErr rules.

pImport = PImport <$> pAtom [Reserved Import)
<> pOpt (pAtom [Reserved Qualified])
<> ppAtom [Consldent)
<x> pOpt (pKW [Reserved As| ppCons)
<> (TC <$> pImpSpec)
where pImpSpec = Bin <$> (pKW [Reserved Hiding] $
please pImpS) <> pMany pErr
<|> Bin <$> pImpS <x> pMany pErr
<|> pMany pErr
pImpS = DC <$> pParenSep pExp’
pExp’ = Bin <$> (PAtom <$> sym
(uncurry (V) o (&&&)
(flip elem [Varldent, Consldent))
isOperator) <> pComments
<|> pQuarsym)
<*x> pOpt pImpS

Figure 22: Rule to parse single import

Since qualified, as and hiding which is not reserved is parsed in an import,
they can safely be highlighted as keywords here and ordinary identifiers at all
other occurrences. This means the problem of highlighting quasi-keywords has
been solved.

4.4.7 Top declarations (body)

The parsing of the body is divided into several subsections. Since only type,
class, instance, data, type signatures and the lhs of functions is allowed with-
out any indentation, they are the first to be matched on the line. In the
Haskell98 report this is described as the top declarations of a Haskell mod-

35

ule. If the first thing that is not indented on a line is something else than a top

declaration, it will be parsed as an error and thus can be highlighted as such.
A module consist of many top declarations and they are separated by the

nextLine token. In Haskell code the top declarations can be parsed as in fig. 23.

pTopDecl :: [Token] — Parser TT [(Exp TT)]
pTopDecl at = pFunDecl at

<|> pToList pType

<|> pToList pData

<|> pToList pClass

<|> pToList pInstance

<|> pEmpty

Figure 23: Rule to parse top declarations

Where pFunDecl parse both lhs of functions and type signatures. pFunDecl
also parse everything not covered by the other rules.

4.4.8 data
data Ezpr = ...

| PData { datakeyword :: (PAtom t)
, context = (Exp t)
, types = (Exp t)
, Ths = (Ezp t)
}

| PData’ { eqOrWhere o (PAtom t)
, cons :(Exp t)

, derivingKeyword :: (Exzp t)

}

Figure 24: Data constructor for data declarations

The structure (fig. 24) for the data declarations has been divided into the
lhs and rhs. This division into lhs and rhs simplifies support of parsing data
declarations without a rhs.

After the data (fig. 25) keyword comes the optional context that will be
marked as a type constructor using the T'C constructor as wrapper. The
pSimple Type parses patterns beginning with a parenthesis, or a type construc-
tor, followed by several type variables.

36

pData :: Parser TT (Exp TT)
pData = PData <$> pAtom [(Reserved Data)]
<x> pOpt (TC <$> pContext)
<> (TC <$> pSimple Type)
<> (pOpt (Bin <$> pDataRHS <x> pMany pErr))
<x pTestTok pFol

Figure 25: Rule to parse a data declaration

As earlier mentioned the rhs is optional, and can be followed by some erro-
neous input that should be handled as errors. pFEol is defined to be the marker
that indicates that the data declaration has been ended.

The rhs begins either with = or a where depending if it is an ordinary data
declaration or a GADT. The rule used to parse a data declaration can be viewed
in fig. 25 and the right hand side of the data declaration in fig. 26.

pDataRHS :: Parser TT (Exzp TT)
pDataRHS = PData’ <$> pAtom eqW
<x> (please pConstrs
<|> pBlockOf' (Block <$> many pGadt
‘BL.sepByl‘ exact [nextLine]))
<*> pOpt pDeriving
<|> pDeriving
where eqW = [(ReservedOp Equal), (Reserved Where)]

Figure 26: Rule to parse a rhs data declaration

The rhs of a data declaration is one of

e a GADT which is parsed by pGadt (fig. 27) this begins with the where
keyword.

e a | separated list of data constructors, parsed by pConstrs, that begins
with the same operator.

e a simple deriving (fig. 28) beginning with deriving keyword.

The rule for parsing GADTs (fig. 27) begins by parsing a type constructor,
since the where keyword was already matched in fig. 26. An :: operator is
required before the optional context, followed by the GADT content. pAtype
parse type constructors, anything inside of parenthesis and anything inside of
brackets.

A deriving declaration (fig. 28) is simply the deriving keyword followed by
please either a type constructor or a parenthesized list of type constructors.

37

pGadt :: Parser TT (Exp TT)
pGadt = Bin <$> (DC <$> pQtycon)
<> (ppOP [ReservedOp $ OtherOp "::"]
(Bin <$> pOpt pContext <x>
(pTypeRhs <[> (pOP [Operator "'"] pAtype) <|> pErr)))
<|> pErr

Figure 27: Rule to parse a GADT

pDeriving :: Parser TT (Exp TT)
pDeriving = TC <$>
(pKW (exact [Reserved Deriving])
(please $ pParen
(Bin <$> please pQtycon
<> many (Bin <$> pComma <x> please pQtycon))
<[> pQtycon))

Figure 28: Rule to parse deriving

4.4.9 type

The structure used for the type declarations (fig. 29) is part of the Expr type
that is used for all different parts of the module body.

data Fzpr = ..
| PType { typeKeyword :: (PAtom t)
, typeCons : (Ezp t)
, type Vars (Bxp t)
, eqOp :: (PAtom t)
, bType :: (Exp t)
}

Figure 29: Data constructor for types

The rule used to parse type declaration begins with matching on the type
keyword.

38

pType :: Parser TT (Exp TT)
pType = PType <$> pAtom | Reserved Type]
<> (TC <$> ppCons) <x> pMany pQuarid
<> ppAtom [ReservedOp Equal]
<> (TC <$> please pTypeRhs) <x pTestTok pFEol
where pFol = [startBlock
, nextLine
, endBlock]

Figure 30: Rule to parse a type declaration

4.4.10 class

The class declaration (fig. 31) is simply divided into the keyword, an optional
context, a type constructor and a variable. After this comes an optional where
clause which in this project is allowed to contain any of the top declarations.

data Ezpr = ...
| PClass { classKeyword :: (PAtom t)
, context (Exp t)
, typeCons = (Exp t)
, type Var (Ezp t)
, whereBlock (Ezp t)

}

Figure 31: data constructor for a class declaration

4.4.11 instance

An instance declaration (fig. 32) is very similar to the class declaration, but
here the first keyword is instance and the where clause is required. Also all
top declarations are allowed inside of the where block of an instance declaration,
this to simplify future support of extensions.

4.4.12 Function declaration

The left hand side of functions is parsed (fig. 33) by matching on either a
parenthesis, a Varldent or a keyword that is not yet parsed elsewhere at this
stage. An example is the foreign keyword 4, used when using functions written
in C.

4This is a keyword from an extension to Haskell98

39

data Ezpr = ...

| PInstance {instanceKeyword :: (PAtom t)
, context = (Ezp t)
, typeCons = (Eap t)
, typeVar (Exp t)
, whereBlock (Ezp t)

}

Figure 32: Data constructor for an instance declaration

It is impossible to separate a function lhs from a type signature lhs on the
first token, if the token is for example a Varldent. To simplify things they are
parsed together until the rhs shows up. If the rhs begins with :: we know it is
an type signature, if a | or a = is found then we know we are parsing a function.

After the first token of a function there might come more parentheses,
Varldents or keywords that is not yet handled, so the parser keeps parsing
until it sees either a |, a = or a :: then the Right hand side of the function or
type signature has been reached.

pFunDecl :: [Token] — Parser TT [(Exp TT)]
pFunDecl at = (:) <$> beginLine
<x> (pTypeSig
<|>pTr at)
<> ((:) <$> pAtom [Special ’,”]
<> (pFunDecl at <|> pEmpty)))
where beginLine = pCParen (pTr at) pEmpty
<|> pCBrack (pTr at) pEmpty
<|> (PAtom <$>
sym (flip notElem $ isNoise)
<x> pEmpty)
<|> (PError <$> recover With
(sym $ flip elem $ isNoiseErr)
<> pure (newT * 1) <> pEmpty)

Figure 33: Rule to parse lhs of a function

at is a list of tokens not to parse as atoms. beginLine match the earlier
mentioned allowed first tokens of the lhs in a function or type signature. pTr
which is used, will parse anything that is not part of a top declaration (like
type, data, newtype etc.).

40

4.4.13 Function right hand side

pFunRHS :: [Token] — Parser TT (Exp TT)
pFunRHS at = Bin <$> (pGuard
<|> pEq err at) <*> pOpt pst
where pst = Expr <$> ((:) <$>
(PWhere <$> pAtom [Reserved Where)]
<> please (pBlockOf $ pFunDecl at))
<> pTr' at)

Figure 34: Right hand side of a function

A function rhs begins with either = or | and then follows the rest of the
function, if it is a guard then more guards can follow. The implementation in
fig. 34 separates rhs with guards (fig. 35) and equal signs because a rhs with
equal signs is only allowed to have one equal, while guards can have several (one
for each guard).

pGuard makes use of some, since the pattern repeats for every guard there
must be one expression and then an equal sign and then another expression. In
the Haskell98 report guards contain an exp, which is simply a = followed by an
expression and more guarded ezp, in this project they have been separated in a
try to simplify the layout handling later on. pTr’ will parse anything except pipe,
where and equals, to prevent the parser from having several optional parses.

A function can always have an optional ending where clause containing more
function lhss.

pGuard :: Parser TT (Exp TT)
pGuard = PGuard <$>
some (PGuard’ <$> (pCAtom | ReservedOp Pipe| pEmpty) <+>
-- comments are by default parsed after this
(pTr' at)
<> please (pCAtom [(ReservedOp Equal)
, (ReservedOp RightArrow)]
pEmpty)
-- comments are by default parsed after this
-- this must be rightarrow if used in case
<> pTr' at)

Figure 35: Parse guard part of functions

Comments are automatically parsed here because of the earlier discussed new
solution to comment handling. This will be further described in the description

41

of expression parsing. The parser allows both equal and right arrow after the
first expression, this is so that in the future the pGuard parser can be used in
case expressions with guards. at is as in pFunDecl.

In order to parse a function rhs beginning with a = the pFEq function in
fig. 36 is used

pEq :: [Token| — [Token] — Parser TT (Exzp TT)
pEq at = RHS <$> (PAtom <$> exact [ReservedOp Equal)
<x> pEmpty)
<> (pTr' at)

Figure 36: Parse equal part of a function

4.4.14 Type signatures

In this project a quite simple and not very precise parse rule is used to parse
type signatures, its main purpose is only to help color the type constructors in
a correct way. Since type constructors in the type signatures only exist on the
rhs, the lhs is not interesting for anything in this thesis.

pTypeSig :: Parser TT [(Exp TT)]
pTypeSig = pToList (TS <$> exact [ReservedOp (OtherOp "::")]
<> (pTr noiseErr) <x pTestTok pEol)
where pFol = [startBlock, endBlock, nextLine]

Figure 37: RHS of type signatures

The rhs type signature begins with ReservedOp (OtherOp "::") and then
anything is allowed due to the fact that we are only interested in highlight-
ing type constructors with correct color and this can easily be done with this
information.

4.4.15 Expressions

When parsing expressions, most tokens is parsed as PAtom since we do not care
about them, but the parenthesises are important since there should be matching
done on them. Also as previously stated the let expressions will be parsed to be
able to give indentation support. In expressions comments is always parsed as
the first token in PAtom and after this follows an empty list, this can be done
since there are no specific order being parsed that the comments can destroy.
By using this solution the number of possible parse paths that needs to be
considered can be lowered by one after each PAtom. Tokens that is considered

42

pTree :: [Token| — [Token] — Parser TT (Exp TT)
pTree at
— (pParen (pTr (at \\ [Special *,*]))) pBmpty)
<|> (pBrack ((pTr' (at \\ notAtom))) pEmpty)

<|> (pBrace ((pTr' (at \\ notAtom))) pEmpty)
<|> pLet

<|> (PError <$> recover With
(sym $ flip elem $ (isNoiseErr))
<> pure (newT *1°) <> pEmpty)

<|> (PAtom <$> sym (flip notElem (isNoise at)) <> pEmpty)
where notAtom = [(Special *,”)

, (ReservedOp Pipe)
(ReservedOp Equal)]

)

Figure 38: Parsing expressions

being an error in expressions are defined by isNoiseErr, examples of things not
allowed as expressions are import, data and class.

pLet :: Parser TT (Exzp TT)
pLet = PLet <$> pAtom [Reserved Let]
<> (pBlockOf’
(Block <$> pBlocks
(b7 at))
<|> (pEmptyBL <x pTestTok pFEol))

<> pOpt (pCAtom [Reserved In] pEmpty)
where pFol = [endBlock]

Figure 39: Parsing let expressions

In order to parse a let expression the pLet parse rule is used, it matches the
beginning Let token and then comes a block or nothing followed by the end of a
block. The endBlock is used since if there is no block to be matched, this means
that the file must be empty after the let keyword.

Special ’<’
Reserved Let

Special >>° -- end of the block encapsulating all of the content

The optional in keyword is here only allowed at the end of a block, the
layout automatically close the block when the in is found so this is no problem.

43

Several of the parse rules that has been implemented in this project has been
left out of this report. The rules can instead be read in the source code, which
is open and instructions how to get it is available in the Yi wiki.

4.5 Highlighting

In this project a decision was made that if something parsed contains an error,
both the error and the first keyword on the line is also marked as an error. The
reason behind this decision was that when something is missing in for example
a data declaration like the following that does not contain any constructors

data Maybe a = a

there would not be anything to highlight since the error is that something is
missing. Also this is consistent with the parenthesis matching, which will color
the opening parenthesis if it does not have any closing parenthesis.

One drawback with this approach is that it forces the parser to some times
parse further than what is visible, since if the keyword is to be marked with the
error then all of the content that belongs to that keyword must be parsed to
find possible errors. If an error is found, the first token is specially highlighted
in red to indicate that an error has been found.

4.6 Testing the parser

Implementing a parser can be a tedious task if there is no testing tools available.
It is easy to make some error causing the parser to fail or considering too many
possible parses. In order to be able to parse online, the parser must be fast.

The test-suite must be able to use the parser as it is intended, token by
token and being evaluated when each token is added, it should then continue
from the previously evaluated state. Also the test-suite should have an option
to parse the given file pushing all tokens to the parser so that it greedily parses
the file.

When an error is found it is important to have an option to only feed a
couple of tokens to the parser to find at which token it fails. In the visual
process it is important to see where the parser shifts and what token it shifts.
The information that can be interesting to see about the parser can be the
complete process, an evaluated process and when a shift takes place in the
parser. Also the possibility to insert trace messages is helpful.

The process tree produced by the test-suite can be visualized by dot (AT&T,
n.d.). By using flags the test-suite can be run with different settings, the differ-
ent options are

e -hs / -js tells the test to run Haskell files or Javascript files the default is
to run a test with Javascript files.

44

e -cmp compares the result with a parse done by the simple parser that only
does parenthesis matching. This is intended to be combined with the -hs
flag.

e -oneBy pushes the tokens one by one as intended, this can be used to get
a notion of how ”fast“ the parser is.

e -Toks=number where number is a number > 0, stops after pushing that
many tokens to the parser.

e -1 recursively search for files in the given folder.

e -Tree=file name tells the test to create a dot file with the given file name,
this can then be visualized by running graphviz.

The order of the flags does not matter and the test-suite must be given either
a folder or a file to parse, if a folder is given it will parse all files in the given
folder with correct extensions.

An example of how things can go wrong (make the number of paths increase
too much) is when some comments are allowed after some comments like in
following example

parse :: Parser TT (Exzp TT)

parse = ezact [beginBlock]
<* pAtom (ezxact [Consldent]) <+x> pAtom (symbol $ cons True)
*> exact [endBlock]

And the following code is parsed

List
-- Comment

The possible parses can be viewed in fig. 40, which is the result of running
the test-suite and printing a tree view of the result. The parser ends up with
many possible parses, in fig. 40, LFail means the parser will fail if that branch
is chosen, LSusp is a "good “ state where the parse is successful. As can be seen,
there are several paths that can be chosen to end up in a ”"good“ state.

The implemented parser has been tested by running the test-suite on the
source code of Yi (138 files) this will be further discussed in section 5.4. The
most useful part of the test-suite has been the possibillity to run the parser on
a larger amount of files without having to interact with it.

45

Figure 40: Bad Process

5 Result

The existing parser library has been improved during the project, in order to
improve the parsing and to simplify the testing of implemented parsers.

5.1 Highlighting errors

The parser implements correct highlighting in all parsed constructs

e Correct highlighting of as qualified hiding
if in imports they are highlighted as keywords and at other places they
are highlighted as ordinary variables.
see fig. 41

e Highlight errors when wrong in module declaration
see fig. 41

46

I vi.5vrto.Hoskell ¢ PModule €0
PHodulebecl (..
PImport ..5
Exp (-3

Tree

parse
indent3canner
getExprs

e wm w w w w o

import Preluds ()

R ooto.tovb: EEEEE

import Dota.lList ifilter, urion, tokeWhile, (000

import ¥i.lexer.Alex

import ¥i.lexer.Hoskell

I i svnto Lovout (S EEEEEE — conment]]
import ¥i.Swntox.Tree

import qualified Yi.Swntox.BList as BL

import ¥i.9vntox

import ¥i.Prelude

import Prelude

k% Hoskell.hs L24 C46 3% precize haskell &72

Figure 41: Highlighting of Module declaration and imports

e Highlight errors when wrong in import declarations
see fig. 41

e Highlight errors when wrong in type declarations
see fig. 42

e Highlight errors when wrong in data declarations
see fig. 42

e Highlight errors when wrong in instance declarations
e Highlight errors when wrong in class declarations

e Type constructors is highlighted in their own color (separated from data
constructors)
Since type constructors is something else than data constructors they now
have their own color to separate them
see fig. 42

e Data constructors is highlighted in their own color (separated from type
constructors)
see fig. 42

e Imports is highlighted as modules
The module name of the imported module is highlighted with the module
name color
see fig. 41

47

data Mavbe a
Just a
Hothing

- error Either a b
Left a

Right b

dota LockState = Locked | Unlocked
BB crror Lock - Tvar LockStote

type Lock = Tvar LockStotel]

k% Thip.hs L1z CZ6 188% precize haskell 191

Figure 42: Highlighting of data declarations, data constructors and type con-
structors

e Module name is highlighted in module name
Same as with import module names
see fig. 41

e Exported modules is highlighted in module name
Same as above

e in is highlighted correct in (most) occurrences
in is highlighted as an error when not used correctly and tied to a let
expression, since in is a real keyword it is only allowed in a let expression
see fig. 43

e Incomplete guards in function rhs are highlighted as an error
see fig. 43

5.2 Indentation

In addition to highlighting, the AST is available for any kind of functionality.
In this section we briefly describe how it can be used to provide indentation
hints to the user.

The indentation hints are very useful in a layout-aware language as Haskell.
Instead of using space, it allows the user to “cycle” between different possible
indentations. Indentation hints of guards, equal, where, of and parentheses are
examples of what is currently supported. The stopsOf fig. 44 function runs

48

pCErace p ¢ - Paren pCatom [Special '{'] c

1] (recoverston pCAtom [Special '}'] c)
pCErack p ¢ = Paren pCAtom [Special '['] c
b {recoverAtam pCAtom [Special ']'] c)

pParen, pBrace, pBrack Porzer TT [Exp TT] Parser TT (Exp TT)
pParen = flip pCParen pComments
pBrace - flip pCBrace pComments
pBrack = flip pCBrack pComments

function hiding | True dnSDmethingI
[I —— incomplete guards are marked as errorneous

functionZ as let @ = as
in as

function3 . —— wrong placed in is highlighted

Figure 43: Highlighting of guards, let expressions and hiding as variable

through the AST and based on the information, it provides a list of indentation
hints. The indentation help is intended to help the programmer write easy to
read code, and makes it easy to write code that has correct layout.

The parser allows the indentation to be so precise that it can provide different
indentation when continuing a function on a new line. If it is an operator that
is the continuation of the function on the new line as in fig. 45 then the <x>
operator is indented so that the end of it is where the equal sign ends. A function
that has been split into two rows where the second row begins with something
else than an operator is indented aligned with the end of the equal sign.

5.3 Language extensions

The extensions that has been implemented during this project is

GADT Fully supported.

EmptyDataDecls Fully supported.

RankNTypes The RankNTypes is only implemented for data declarations.
MagicHash This is only a lexer extension.

TypeOperators Partly implemented, type declarations and exports from a
module, but not yet valid in data declarations.

49

5.4

Measuring performance in the parser by ”typing”
task. Counting the number of paths available in the process gives a better
measurement of the expected performance (if many possible paths are considered

stopsOf :: [Hask.Exp TT] — [Int]
stopsOf (9Q(Hask.Paren (Hask.PAtom open _)
ctnt (Hask.PAtom close _)) : ts)
| isErrorTok (tokT close) V getLastOffset g > solPnt
= [groupIndent open ctnt]
-- stop here: we want to be ”inside” that group.
| otherwise = stopsOf ts
-- this group is closed before this line; just skip it.
stopsOf ((Hask.PAtom (Tok {tokT =t}) _):_)
| startsLayout t V (¢t = ReservedOp Equal)
= [nextIndent, previousIndent + indentLevel |
-- of; where; etc. ends the previous line.
-- We want to start the block here.
-- Also use the next line’s indent:
-- maybe we are putting a new 1st statement in the block here.
stopsOf ((Hask.PGuard' (PAtom pipe _) _ _ _): _
= [tokCol pipe | lineStartsWith (ReservedOp Haskell. Pipe)|
-- offer to align against another guard
stopsOf ((Hask.RHS (Hask.PAtom eq _) (exp:_)): ts)
= [(case firstTokOnLine of
Just (Operator op) — opLength op (colOf’ exp)
_ — colOf" exp) | linelsExpression] H stopsOf ts'
-- offer to continue the RHS if this looks like an expression.

Figure 44: Function to get indentation suggestion

example a b cc = (,) <$> parseSomething
<*> parseSomethingFElse

anotherExample = this function is quite long so
it has been split into two lines

Figure 45: Indentation of functions

Performance

it will take more time).

The tests that have been run on the code source of Yi (138 Haskell files)
indicates that the performance of the parser has almost as good performance
as the parenthesis matching parser provided in Yi. A comparison between the

50

in the editor is not an easy

parenthesis matching parser and the new improved parser can be viewed in
fig. 46. The test shows that the number of possible paths that are considered
in the precise parser is a bit less than twice as many as the number in the
parenthesis parser. Considering that the precise parser parse more than twice
as many things as the parenthesis parser this is quite a good result.

Some times has been measured when running the test-suite on all the files
in the Yi project (those that are Haskell files). This was done to give the reader
of this thesis an idea of how much time it takes to parse a file. Both pushing all
content of each file to the parser and doing it token by token has been measured
the result gives a hint if the parser is fast or not. The test-suite was run five
times with token by token setting and five times with the push all tokens at
once setting. The 138 files contain a total of 162150 tokens, which gives 1175
tokens in average per file.

Old parser New parser Difference
Possible paths 4802412 8124513 3322101
Paths per token 29.6 50.1 20.5

no flags 4.56s 8.5s 3.94s
oneBy flag 5.6s 11s 5.4s

Figure 46: Comparison between old parser, that only parsed parenthesises, and
the new more precise parser

Pushing one by one has an approximated time of 11 seconds (measured by
the terminal time command). This means that in average it spent 0.079s to
parse all of the content in one file. When given all of the content at once it took
approximately 8.5s which gives an average of 0.061s per file. When this test was
performed, the test-suite was optimized by removing some of the output that is
usually printed to the terminal.

During the last weeks of this project the developed mode has been the one
used when developing the parser and the performance is good enough to be used
interactively.

5.5 Future work

The future work that can be done on the parser is quite large. The parser
should be extended so that most of the available language extensions are parsed.
Maybe the parser should also adapt depending on which extensions are used.
This would improve the parser speed since as few extensions as possible are
considered.

The parser currently only highlights tokens that are wrong with a red color.
It would be good if the parser provided some kind of error message indicating
how the problem can be resolved.

Speed improvements are almost always possible, using the test program pro-
vided by this project it is possible to improve the speed by changing some parse

o1

rules. The discussed threshold where parses are discarded can be changed so
that it can discard parses as early as possible.

A rule for newtype has not been implemented, but should be implemented
in the future.

Other ways to use the AST, such as providing support to rename shadowing
parameters, the usual solution to this problem is to add a ’ to the parameters
that is shadowed in the where clause.

fab=g(a+d)(b—a)
where g a c=axc

-- is translated into
fab=g(a+b)(b—a)
where ga’ c=axc

In the example ¢ in the fixed version of f miss the ’ by extending the parser so
that the parameters of functions is parsed, it would be quite easy to implement
a command that renames shadowed parameters in the where clause, using the
information from the parser. Several extensions using the parser like this can be
imagined, already a dollarify function exist replacing parenthesises with dollar
when possible. Another one would be a command that makes the code point-
free. This is a suggestions received from the Haskell-cafe mail list.

6 Conclusion

In this project a parser for Haskell98 has been developed, and it is possible to
use it in an interactive editor. Along with this a test-suite has been developed.
The parser can parse most of the Haskell98 syntax and mark where errors occur.
Also some extensions to Haskell98 have been considered and can be parsed. The
default for extensions that is not supported is that they are highlighted as errors.

Building a parser in a functional language has been a joy during this project,
a functional language that is type safe as Haskell makes it easier to find the errors
at compile time. Since most errors has been captured in the compiler, there has
been almost no need for the test-suite checking for run-time errors that make
the program exit. The only thing really needed to be tested has been if the
parser considers too many different parses.

Goals that were stated in the beginning has been fulfilled:

Feedback online the parser library has been used and gives feedback quickly.
Precise feedback the parser find alot of the possible syntactical errors.
Robustness the parser recovers gracefully from errors.

Encapsulation done.

52

The technical goals:

Parse Haskell98 most parts is as described parsed.
Incremental parser is used.

Available in Yi done.

The implemented parser has been introduced to the Yi community and dur-
ing the last weeks of the development the new mode using the parser was used
while being developed.

53

References

Aho, A. V., Lam, M. S.; Sethi, R. and Ullman, J. D. (2006), Compilers:
Principles, Techniques, and Tools (2nd Edition), Addison Wesley.

AT&T (n.d.), ‘Graphviz’, http://www.graphviz.org/.

Bernardy, J. (2008), Yi: an editor in haskell for haskell, in ‘Proceedings of the
first ACM SIGPLAN symposium on Haskell’, ACM, Victoria, BC, Canada,
pp. 61-62.

Bernardy, J. (2009), Lazy functional incremental parsing, in ‘Proceedings of the

second ACM SIGPLAN symposium on Haskell’, ACM, Edinburgh, UK.

Claessen, K. (2004), ‘Parallel parsing processes’, Journal of Functional
Programming 14(6), 741-757.

Dogan, D. (2009), A JavaScript Mode for Yi, Master’s thesis, Chalmers Univer-
sity of Technology.

Don, S. (n.d.), ‘Yi’, http://www.haskell.org/haskellwiki/Yi.

Hudak, P., Hughes, J., Jones, S. P. and Wadler, P. (2007), ‘A history of haskell:
Being lazy with class’, ttt . http://dx.doi.org/10.1145,/1238844.1238856.

Hughes, J. (1989), ‘Why functional programming matters’, Computer Journal
32(2), 98-107.

Inc,, F. S. F. (n.d.), ‘GNU Emacs’, http://www.gnu.org/software/emacs/.

John, R. J. M. and Swierstra, S. D. (2003), Polish parsers, step by step, in ‘ICFP
'03: Proceedings of the eighth ACM SIGPLAN international conference on
Functional programming’, Vol. 38, ACM Press, pp. 239-248.

Marlow, A. (n.d.), ‘Alex’, http://www.haskell.org/alex/.
Moolenaar, B. (n.d.), ‘Vim’, http://www.vim.org/.
of Glasgow, U. (n.d.), ‘Ghc’, http://www.haskell.org/ghc/.

O’Sullivan, B., Stewart, D. and Goerzen, J. (2008), Real World Haskell, O’Reilly
Media, Inc.

Peyton Jones, S. (2003), Haskell 98 Language and Libraries: The Revised
Report, Cambridge University Press.

Stewart, D. and Chakravarty, M. M. (2005), Dynamic applications from the
ground up, in ‘Haskell '05: Proceedings of the 2005 ACM SIGPLAN work-

shop on Haskell’, ACM Press, New York, NY, USA, pp. 27-38.

Stewart, D. and Sjanssen, S. (2007), Xmonad, in ‘Haskell '07: Proceedings of
the ACM SIGPLAN workshop on Haskell workshop’, ACM, New York,
NY, USA, p. 119.

54

