CS 245: Database System
Principles

Notes 08: Failure Recovery

Hector Garcia-Molina

CS 245 Notes 08

PART Il

Crash recovery (2 lectures) Ch.17[17]
Concurrency control (3 lectures) Ch.18[18]
Transaction processing (2 lects) Ch.19[19]

Information integration (1 lect) Ch.20[21,22]

CS 245 Notes 08 2

Integrity or correctness of data

« Would like data to be “accurate” or
“correct” at all times

EMP Name |Age

White | 52
Green (3421
Gray 1

CS 245 Notes 08

Integrity or consistency constraints

« Predicates data must satisfy
e Examples:
- X is key of relation R
- X =y holds in R
- Domain(x) = {Red, Blue, Green}
—a is valid index for attribute x of R

- no employee should make more than
twice the average salary

CS 245 Notes 08 4

Definition:

» Consistent state: satisfies all constraints
» Consistent DB: DB in consistent state

Cs 245 Notes 08

Constraints (as we use here) may
not capture “full correctness”

Example 1 Transaction constraints
* When salary is updated,
new salary > old salary
e When account record is deleted,
balance = 0

CS 245 Notes 08 6

Note: could be “emulated” by simple
constraints, e.g.,

account |Acct#‘ ‘balance|deleted?‘

CS 245 Notes 08 7

Constraints (as we use here) may
not capture “full correctness”

Example 2 Database should reflect
real world

D
- < Reality

CS 245 Notes 08 8

=7in any case, continue with constraints...

Observation: DB cannot be consistent
always!

Example: a1 + a2 +.... an = TOT (constraint)
Deposit $100 in a2: | a2 <« a2 + 100
TOT « TOT + 100

CS 245 Notes 08 9

Example: ar+ az +.... an=TOT (constraint)
Deposit $100 in a2: a2 « a2 + 100
TOT « TOT + 100

az 50 150 150

TOT | 1000 1000 1100

CS 245 Notes 08 10

Transaction: collection of actions
that preserve consistency

@D% T GSistent DB’

Cs 245 Notes 08 11

Big assumption:

If T starts with consistent state +
T executes in isolation
= T leaves consistent state

CS 245 Notes 08 12

Correctness (informally)

« If we stop running transactions,
DB left consistent

» Each transaction sees a consistent DB

CS 245 Notes 08 13

How can constraints be violated?

e Transaction bug
- DBMS bug
= Hardware failure
e.g., disk crash alters balance of account
 Data sharing

e.g.: T1: give 10% raise to programmers
T2: change programmers => systems analysts

CS 245 Notes 08 14

How can we prevent/fix violations?

e Chapter 8[17]: due to failures only
e Chapter 9[18]: due to data sharing only
e Chapter 10[19]: due to failures and sharing

CS 245 Notes 08 15

Will not consider:

* How to write correct transactions
* How to write correct DBMS
» Constraint checking & repair

That is, solutions studied here do not need
to know constraints

CS 245 Notes 08 16

Chapter 8[17]: Recovery

» First order of business:
Failure Model

Cs 245 Notes 08 17

Events — Desired
™~ Undesired — Expected
Unexpected

CS 245 Notes 08 18

Our failure model
<~ Processor

memory - ~ Ej """ disk

CS 245 Notes 08 19

Desired events: see product manuals....

Undesired expected events:
System crash
- memory lost
- cpu halts, resets

CS 245 Notes 08 20

Desired events: see product manuals....

Undesired expected events:
System crash
- memory lost
- cpu halts, resets

Undesired Unexpected: Everything else!

that's it!!

Undesired Unexpected: Everything else!

CS 245 Notes 08 21

Examples:

» Disk data is lost

e Memory lost without CPU halt

e CPU implodes wiping out universe....

CS 245 Notes 08 22

Is this model reasonable?

Approach: Add low level checks +
redundancy to increase

probability model holds
E.g.,| Replicate disk storage (stable store)
Memory parity
CPU checks

Cs 245 Notes 08

23

Second order of business:

Storage hierarchy

>
Memory Disk

CS 245 Notes 08 24

Operations:

e Input (x): block containing X — memory
e Output (x): block containing x — disk

CS 245 Notes 08 25

Operations:

e Input (x): block containing X — memory
e Output (x): block containing x — disk

e Read (x,t): do input(x) if necessary

t < value of x in block

e Write (x,t): do input(x) if necessary

CS 245

value of x in block < t

Notes 08 26

Key problem Unfinished transaction

Example Constraint: A=B
Ti: A « Ax2
B« Bx2

Ta:

CS 245

Read (A,1); t« tx2
Write (At);
Read (B,t); t« tx2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

memory disk

Notes 08 28

Ti: Read (At); t« tx2
Write (A,t);
Read (B,t); t « tx2
Write (B,t);
Output (A);
Output (B);

A:.8 16
B:.8716

memory disk

Cs 245 Notes 08 29

Ta:

Read (At); t« tx2
Write (At);
Read (B,t); t « tx2
Write (B,t);

Output (A);)
failure!

CS 245

Output (B);

A:.8 16
B:.8"16

memory disk

Notes 08 30

< Need atomicity: execute all actions of
a transaction or none
at all

CS 245 Notes 08 31

One solution: undo logging (immediate
modification)

due to: Hansel and Gretel, 1812 AD

CS 245 Notes 08 32

One solution: undo logging (immediate
modification)

due to: Hansel and Gretel, 1812 AD

e Improved in 1813 AD to durable
undo logging

CS 245 Notes 08 33

Undo Iogging (Immediate modification)

T1: Read (At); t« tx2 A=B
Write (At);
Read (B,t); t « tx2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

memory disk log

CS 245 Notes 08 34

Undo logging (immediate modification)

Ti: Read (Ajt); t<« tx2 A=B
Write (At);
Read (B,t); t « tx2
Write (B,t);
Output (A);
Output (B);

<T1, start>
<T1, A 8>

A8 16
B:8 16

memory log

Cs 245 Notes 08 35

Undo logging (immediate modification)

Ti: Read (Ajt); t<« tx2 A=B
Write (At);
Read (B,t); t <« tx2
Write (B,t);
Output (A);
Output (B);
<T1, start>
<T1, A 8>

A8 16
B:8 16

<T1, B, 8>

memory disk log
CS 245 Notes 08 36

Undo Iogging (Immediate modification)

Ti: Read (At); t« tx2 A=B
Write (At);
Read (B,t); t <« tx2
Write (B,t);
Output (A);
Output (B);
<T1, start>
T <T1, A 8>
A8 16 A816 <T1, B, 8>
memory disk

Undo Iogging (Immediate modification)

Ti: Read (At); t« tx2 A=B
Write (At);
Read (B,t); t <« tx2
Write (B,t);
Output (A);
Output (B);
<T1, start>
< <T1, A, 8>
A8 16 A816
B:8 16 B:8'16
memory disk log

One “complication”

e Log is first written in memory
< Not written to disk on every action

memory A8
A& 16 B:g | DB

B: & 16
Log: Log
<Tui,start>
<Ti1, A, 8>
<Ti1, B, 8>

CS 245 Notes 08 39

One “complication”

e Log is first written in memory
< Not written to disk on every action

memory ALE16
A 16 B:8 | DB BAD STATE

B:& 16 #1
Log: Log

<Ti,start>
<T1, A, 8>
<Ti, B, 8>

CS 245 Notes 08 40

One “complication”

« Log is first written in memory
< Not written to disk on every action

[

memor

y A: 816
A &16 B:8 | DB BAD STATE
B: 216 #2
Log: Log
<T1,start>
<Ti1, A, 8>
<Ti1, B, 8>
<T1, commit>

CS 245 Notes 08 41

Undo logging rules

(1) For every action generate undo log
record (containing old value)

(2) Before xis modified on disk, log
records pertaining to x must be

on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
writes of transaction must be

reflected on disk

CS 245 Notes 08 42

Recovery rules: Undo logging

e For every Ti with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>
in log, do nothing
- Else [For all <Ti, X, v> in log:
{Write V)
output (X)
Write <Ti, abort> to log

CS 245 Notes 08 43

Recovery rules: Undo logging

e For every Ti with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>
in log, do nothing
- Else [For all <Ti, X, v> in log:
{Write oV
output (X)
Write <Ti, abort> to log

XIS THIS CORRECT??

CS 245 Notes 08 44

Recovery rules: Undo logging

(1) Let S = set of transactions with
<Ti, start> in log, but no

<Ti, commit> (or <Ti, abort>) record in log
(2) For each <Ti, X, v>in log,
in reverse order (latest — earliest) do:
-if Ti € Sthen | - write (X, v)
{ - output (X)
(3) For each Ti € Sdo
- write <Ti, abort> to log

CS 245 Notes 08 45

Question

e Can writes of <Ti, abort> records
be done in any order (in Step 3)?
— Example: T1 and T2 both write A
— T1 executed before T2
—T1 and T2 both rolled-back
— <T1, abort> written but NOT <T2, abort>?
— <T2, abort> written but NOT <T1, abort>?

—

T1 write A T2 write A time/log

CS 245 Notes 08 46

What if failure during recovery?

No problem! =) Undo idempotent

Cs 245 Notes 08 47

To discuss:

< Redo logging

< Undo/redo logging, why both?
* Real world actions

e Checkpoints

* Media failures

CS 245 Notes 08 48

Redo Logging Redo logging (deferred modification)
First send Gretel up with no rope, Ta1:
the{AHansel goes up safely with rope!

Read(A,t); t— tx2; write (A1);
Read(B,t); t—tx2; write (B,t);
Output(A); Output(B)

A: 8 A-8
B: 8 B: 8
DB

CS 245

memory
: v LOG
Redo logging (deferred modification) Redo logging (deferred modification)
T1: Read(At); t— tx2; write (A1); T1: Read(At); t— tx2; write (At);
Read(B,t); t—tx2; write (B,t); Read(B,t); t—tx2; write (B,t);
Output(A); Output(B) Output(A); Output(B) -
<T1, start> tout <T1, start>
S T1, A, 16 output <~ T1, A, 16
A 816 A: 8 le, B, 162 AZ16 ——~—— |A:816 le, B, 16z
B: 8716 B: 8 <T1, commit>] B: 8716 B: 8716 <T1, commit>|
memory DB memory DB
LOG LOG
Redo logging (deferred modification) Redo logging rules
_ (1) For every action, generate redo log
Ti: Read(At); t- tx2; write (AD; record (containing new value)
Read(B,1t); t--tx2; write (B,1); (2) Before X is modified on disk (DB),
Output(A); Output(B) all log records for transaction that
out <T1, start> modified X (including commit) must
output < > .
AB16 —~— . |A 816 ZE ’Q; iZZ be on disk
B: 8716 B: 816 (3) Flush log at commit
memory DB (4) Write END ret_:ord after DB updates
flushed to disk

Recovery rules: Redo logging Recovery rules: Redo logging

e For every Ti with <Ti, commit> in log: e For every Ti with <Ti, commit> in log:
— For all <Ti, X, v>in log: — For all <Ti, X, v>in log:
(Write(X, v) ’ Write(X, v)
Output(X) Output(X)

XIS THIS CORRECT??

CS 245 Notes 08 55 CS 245 Notes 08 56
Recovery rules: Redo logging Combining <Ti. end> Records
(1) Let S = set of transactions with - Want to delay DB flushes for hot objects
<Ti, commit> (and no <Ti, end>) in log Actions:
(2) For each <Ti, X, v>in log, in forward 'Say X is branch balance: /Wfitte i(x
. 1 outpu
order (earliest — latest) do: % Egg:i § - white X
- if Ti € S then| Write(X, v) T3: ... update X... —— Sv‘:itt‘;“;x
Output(X) iT4: ... update X... < output X
. . . write X
(3) For each Ti € S, write <Ti, end> output X
CS 245 Notes 08 57 CS 245 Notes 08 58

Combining <Ti, end> Records Solution: Checkpoint

* no <ti, end> actions>
simple checkpoint i

 Want to delay DB flushes for hot objects Periodically:
Actions: (1) Do not accept new transactions

'Say X is branch balance: — "W't® X (2) Wait until all transactions finish

iT1: ... update X... W .

T2 update X, —— Write X (3) Flush all log records to disk (log)

{30 update X.. ——— | write X (4) Flush all buffers to disk (DB) (do not discard bufers)

iT4: ... update X... 5) Write “checkooint” d disk (1

\erite th (5) Write “chec p0|n_ recor or_1 isk (log)

output X (6) Resume transaction processing

combined <end> (checkpoint)

Cs 245 Notes 08 59 CS 245 Notes 08 60

Example: what to do at recovery?

Redo log (disk):

Crash

<T1,A16>
<T1,commit>
Checkpoint
<T2,B,17>
<T2,commit>
<T3,C,21>

CS 245 Notes 08 61

Key drawbacks:

e Undo logging. cannot bring backup DB
copies up to date

e Redo logging. need to keep all modified
blocks in memory
until commit

CS 245 Notes 08 62

Solution: undo/redo logging!

Update = <Ti, Xid, New X val, Old X val>
page X

CS 245 Notes 08 63

Rules

» Page X can be flushed before or
after Ti commit
» Log record flushed before
corresponding updated page (WAL)
e Flush at commit (log only)

CS 245 Notes 08 64

Example: Undo/Redo logging
what to do at recovery?

log (disk):

Crash

<T1, A, 10, 15>
<T2, C, 30, 38>

<T2, D, 40, 41>

<T1, commit>

<T1, B, 20, 23>

<checkpoint>

Cs 245 Notes 08 65

Non-quiesce checkpoint

L
O .. |awerk| .. |on
G .| TiT2.. ckpt
for
undo dirty buffer
pool pages
flushed

CS 245 Notes 08 66

11

Non-quiesce checkpoint

checkpoint process:
fori:=1toMdo

output(buffer i) -

[transactions run concurrently]

CS 245 Notes 08

memory

67

Examples what to do at recovery time?

no T1 commit

Examples what to do at recovery time?

no T1 commit

L
0 T1,- Ckpt Ckpt T1-
a Tl T end b
G ™)
CS 245 Notes 08 68
Example
L
(0] T1 ckpt-s| | T1 ckpt-| | T1 T1
G la| ™| T [b | |end[" | c | |cmt

CS 245

Notes 08

70

L
0 Ta,- Ckpt Ckpt T1-
a T1 end b
G N
X Undo T1 (undo a,b)
CS 245 Notes 08 69
Example
L
(@) T1 ckpt-s| | T1 ckpt-{ | T1 T1
G 1= lal™ Tt b lendr ¢ | lomt

% Redo T1: (redo b,c)

Cs 245 Notes 08

71

Recover From Valid Checkpoint:

o

ckpt ckpt T1

start | " |end || b

ckpt-

*|start["”

T1

CS 245

I

start

of latest
valid
checkpoint

Notes 08

72

12

Recovery process:

Backwards Pass (end of log 2 latest valid checkpoint start)
— construct set S of committed transactions
— undo actions of transactions not in S
* Undo pending transactions
— follow undo chains for transactions in
(checkpoint active list) - S
Forward Pass (latest checkpoint start 2 end of log)
— redo actions of S transactions

backward pass
start

[check-|
point

forward pass

CS 245 Notes 08 73

Real world actions

E.g., dispense cash at ATM
Ti=aia...... =TI an

CS 245 Notes 08 74

Solution

(1) execute real-world actions after commit
(2) try to make idempotent

CS 245 Notes 08 75

ATM

Give$$

. . lastTid: []
(amt, Tid, time)

time: [

| give(amt)

S

CS 245 Notes 08 76

Media failure (loss of non-volatile
storage)

A: 16

Cs 245 Notes 08 ”

Media failure (loss of non-volatile
storage)

A: 16

Solution: Make copies of data!

CS 245 Notes 08 78

13

Example 1 Triple modular redundancy

» Keep 3 copies on separate disks
e Output(X) --> three outputs
e Input(X) --> three inputs + vote

S
X3

CS 245 Notes 08 79

Example #2 Redundant writes,
Single reads

« Keep N copies on separate disks
e Output(X) --> N outputs
 Input(X) --> Input one copy

{ - if ok, done
- else try another one

& Assumes bad data can be detected

CS 245 Notes 08 80

Example #3: DB Dump + Log

5
database database
log

« |f active database is lost,
— restore active database from backup
— bring up-to-date using redo entries in log

CS 245 Notes 08 81

Backup Database

* Just like checkpoint,
except that we write full database

database
create backup database:
for i := 1 to DB_Size do >
[read DB block i; write to backup]

[transactions run concurrently]

CS 245 Notes 08 82

Backup Database

» Just like checkpoint,
except that we write full database

database
create backup database:
for i := 1 to DB_Size do >
[read DB block i; write to backup]

[transactions run concurrently]

« Restore from backup DB and log:
Similar to recovery from checkpoint and log

Cs 245 Notes 08 83

When can log be discarded?

last last
Iog needed db needed Che_Ck
undo dump undo point
) i time
not needed for -,
media recovery
-—
not needed for
media recovery redo
not needed for undo
after system failure
not needed for
redo after system failure
CS 245 Notes 08 84

14

Summary

e Consistency of data

* One source of problems: failures
- Logging
- Redundancy

< Another source of problems:
Data Sharing..... next

CS 245 Notes 08 85

15

