
1

CS 245 Notes 08 1

CS 245: Database System
Principles

Notes 08: Failure Recovery

Hector Garcia-Molina

CS 245 Notes 08 2

PART II
• Crash recovery (2 lectures) Ch.17[17]
• Concurrency control (3 lectures) Ch.18[18]
• Transaction processing (2 lects) Ch.19[19]
• Information integration (1 lect) Ch.20[21,22]

CS 245 Notes 08 3

Integrity or correctness of data

• Would like data to be “accurate” or
“correct” at all times

EMP Name

White
Green
Gray

Age

52
3421

1

CS 245 Notes 08 4

Integrity or consistency constraints

• Predicates data must satisfy
• Examples:

- x is key of relation R
- x  y holds in R
- Domain(x) = {Red, Blue, Green}
 is valid index for attribute x of R
- no employee should make more than

twice the average salary

CS 245 Notes 08 5

Definition:

• Consistent state: satisfies all constraints
• Consistent DB: DB in consistent state

CS 245 Notes 08 6

Constraints (as we use here) may
not capture “full correctness”

Example 1 Transaction constraints
• When salary is updated,

new salary > old salary
• When account record is deleted,

balance = 0

2

CS 245 Notes 08 7

Note: could be “emulated” by simple
constraints, e.g.,

account Acct # …. balance deleted?

CS 245 Notes 08 8

Example 2 Database should reflect
real world

DB
Reality

Constraints (as we use here) may
not capture “full correctness”

CS 245 Notes 08 9

in any case, continue with constraints...

Observation: DB cannot be consistent
always!

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2: a2  a2 + 100

TOT  TOT + 100

CS 245 Notes 08 10

a2

TOT

..
50
..

1000

..
150

..
1000

..
150

..
1100

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2: a2  a2 + 100

TOT  TOT + 100

CS 245 Notes 08 11

Transaction: collection of actions
that preserve consistency

Consistent DB Consistent DB’T

CS 245 Notes 08 12

Big assumption:

If T starts with consistent state +
T executes in isolation

 T leaves consistent state

3

CS 245 Notes 08 13

Correctness (informally)

• If we stop running transactions,
DB left consistent

• Each transaction sees a consistent DB

CS 245 Notes 08 14

How can constraints be violated?

• Transaction bug
• DBMS bug
• Hardware failure

e.g., disk crash alters balance of account

• Data sharing
e.g.: T1: give 10% raise to programmers

T2: change programmers  systems analysts

CS 245 Notes 08 15

How can we prevent/fix violations?

• Chapter 8[17]: due to failures only
• Chapter 9[18]: due to data sharing only
• Chapter 10[19]: due to failures and sharing

CS 245 Notes 08 16

Will not consider:

• How to write correct transactions
• How to write correct DBMS
• Constraint checking & repair

That is, solutions studied here do not need
to know constraints

CS 245 Notes 08 17

Chapter 8[17]: Recovery

• First order of business:
Failure Model

CS 245 Notes 08 18

Events Desired
Undesired Expected

Unexpected

4

CS 245 Notes 08 19

Our failure model

processor

memory disk

CPU

M D

CS 245 Notes 08 20

Desired events: see product manuals….

Undesired expected events:
System crash

- memory lost
- cpu halts, resets

CS 245 Notes 08 21

Desired events: see product manuals….

Undesired expected events:
System crash

- memory lost
- cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!

CS 245 Notes 08 22

Examples:
• Disk data is lost
• Memory lost without CPU halt
• CPU implodes wiping out universe….

Undesired Unexpected: Everything else!

CS 245 Notes 08 23

Is this model reasonable?

Approach: Add low level checks +
redundancy to increase
probability model holds

E.g., Replicate disk storage (stable store)
Memory parity
CPU checks

CS 245 Notes 08 24

Second order of business:

Storage hierarchy

Memory Disk

x x

5

CS 245 Notes 08 25

Operations:

• Input (x): block containing x  memory
• Output (x): block containing x  disk

CS 245 Notes 08 26

Operations:

• Input (x): block containing x  memory
• Output (x): block containing x  disk

• Read (x,t): do input(x) if necessary
t  value of x in block

• Write (x,t): do input(x) if necessary
value of x in block  t

CS 245 Notes 08 27

Key problem Unfinished transaction

Example Constraint: A=B
T1: A  A  2

B  B  2

CS 245 Notes 08 28

T1: Read (A,t); t  t2
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

CS 245 Notes 08 29

T1: Read (A,t); t  t2
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

CS 245 Notes 08 30

T1: Read (A,t); t  t2
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

6

CS 245 Notes 08 31

• Need atomicity: execute all actions of
a transaction or none
at all

CS 245 Notes 08 32

One solution: undo logging (immediate
modification)

due to: Hansel and Gretel, 1812 AD

CS 245 Notes 08 33

One solution: undo logging (immediate
modification)

due to: Hansel and Gretel, 1812 AD

• Improved in 1813 AD to durable
undo logging

CS 245 Notes 08 34

T1: Read (A,t); t  t2 A=B
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

CS 245 Notes 08 35

T1: Read (A,t); t  t2 A=B
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 245 Notes 08 36

T1: Read (A,t); t  t2 A=B
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

7

CS 245 Notes 08 37

T1: Read (A,t); t  t2 A=B
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16

CS 245 Notes 08 38

T1: Read (A,t); t  t2 A=B
Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

CS 245 Notes 08 39

One “complication”
• Log is first written in memory
• Not written to disk on every action

memory
DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 Notes 08 40

One “complication”
• Log is first written in memory
• Not written to disk on every action

memory
DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

1

CS 245 Notes 08 41

One “complication”
• Log is first written in memory
• Not written to disk on every action

memory
DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

...

CS 245 Notes 08 42

Undo logging rules
(1) For every action generate undo log

record (containing old value)
(2) Before x is modified on disk, log

records pertaining to x must be
on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
writes of transaction must be
reflected on disk

8

CS 245 Notes 08 43

Recovery rules: Undo logging

• For every Ti with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>

in log, do nothing
- Else For all <Ti, X, v> in log:

write (X, v)
output (X)

Write <Ti, abort> to log

CS 245 Notes 08 44

Recovery rules: Undo logging

• For every Ti with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>

in log, do nothing
- Else For all <Ti, X, v> in log:

write (X, v)
output (X)

Write <Ti, abort> to log

IS THIS CORRECT??

CS 245 Notes 08 45

Recovery rules: Undo logging
(1) Let S = set of transactions with

<Ti, start> in log, but no
<Ti, commit> (or <Ti, abort>) record in log

(2) For each <Ti, X, v> in log,
in reverse order (latest  earliest) do:

- if Ti  S then - write (X, v)
- output (X)

(3) For each Ti  S do
- write <Ti, abort> to log

CS 245 Notes 08 46

Question
• Can writes of <Ti, abort> records

be done in any order (in Step 3)?
– Example: T1 and T2 both write A
– T1 executed before T2
– T1 and T2 both rolled-back
– <T1, abort> written but NOT <T2, abort>?
– <T2, abort> written but NOT <T1, abort>?

T1 write A T2 write A time/log

CS 245 Notes 08 47

What if failure during recovery?
No problem! Undo idempotent

CS 245 Notes 08 48

To discuss:
• Redo logging
• Undo/redo logging, why both?
• Real world actions
• Checkpoints
• Media failures

9

Redo Logging

CS 245 Notes 08 49

First send Gretel up with no rope,
then Hansel goes up safely with rope!

CS 245 Notes 08 50

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);
Read(B,t); t t2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

CS 245 Notes 08 51

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);
Read(B,t); t t2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

CS 245 Notes 08 52

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);
Read(B,t); t t2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16

CS 245 Notes 08 53

Redo logging (deferred modification)

T1: Read(A,t); t t2; write (A,t);
Read(B,t); t t2; write (B,t);
Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

CS 245 Notes 08 54

Redo logging rules
(1) For every action, generate redo log

record (containing new value)
(2) Before X is modified on disk (DB),

all log records for transaction that
modified X (including commit) must
be on disk

(3) Flush log at commit
(4) Write END record after DB updates

flushed to disk

10

CS 245 Notes 08 55

• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)
Output(X)

Recovery rules: Redo logging

CS 245 Notes 08 56

• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)
Output(X)

Recovery rules: Redo logging

IS THIS CORRECT??

CS 245 Notes 08 57

(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward
order (earliest  latest) do:
- if Ti  S then Write(X, v)

Output(X)
(3) For each Ti  S, write <Ti, end>

Recovery rules: Redo logging

CS 245 Notes 08 58

Combining <Ti, end> Records

• Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

CS 245 Notes 08 59

Combining <Ti, end> Records

• Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> (checkpoint)
CS 245 Notes 08 60

Solution: Checkpoint

Periodically:
(1) Do not accept new transactions
(2) Wait until all transactions finish
(3) Flush all log records to disk (log)
(4) Flush all buffers to disk (DB) (do not discard buffers)

(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

• no <ti, end> actions>
•simple checkpoint

11

CS 245 Notes 08 61

Example: what to do at recovery?

Redo log (disk):

<
T1

,A
,1

6>

<
T1

,c
om

m
it>

Ch
ec

kp
oi

nt

<T
2,

B,
17

>

<
T2

,c
om

m
it>

<
T3

,C
,2

1>

Crash...

CS 245 Notes 08 62

Key drawbacks:

• Undo logging: cannot bring backup DB
copies up to date

• Redo logging: need to keep all modified
blocks in memory
until commit

CS 245 Notes 08 63

Solution: undo/redo logging!

Update  <Ti, Xid, New X val, Old X val>
page X

CS 245 Notes 08 64

Rules

• Page X can be flushed before or
after Ti commit

• Log record flushed before
corresponding updated page (WAL)

• Flush at commit (log only)

CS 245 Notes 08 65

Example: Undo/Redo logging
what to do at recovery?

log (disk):

<
ch

ec
kp

oi
nt

>

<
T1

, A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<
T1

, c
om

m
it>

<
T2

, C
, 3

0,
 3

8>

<
T2

, D
, 4

0,
 4

1>

Crash...

CS 245 Notes 08 66

Non-quiesce checkpoint

L
O
G

for
undo dirty buffer

pool pages
flushed

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

.........

...

12

Non-quiesce checkpoint

CS 245 Notes 08 67

memory
checkpoint process:
for i := 1 to M do

output(buffer i)

[transactions run concurrently]

CS 245 Notes 08 68

Examples what to do at recovery time?

no T1 commit

L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...

CS 245 Notes 08 69

Examples what to do at recovery time?

no T1 commit

L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...

 Undo T1 (undo a,b)

CS 245 Notes 08 70

Example

L
O
G ... T1

a T1
b T1

c ... T1
cmt ...ckpt-

end
ckpt-s
T1

CS 245 Notes 08 71

Example

L
O
G ... T1

a T1
b T1

c ... T1
cmt ...ckpt-

end
ckpt-s
T1

 Redo T1: (redo b,c)

CS 245 Notes 08 72

Recover From Valid Checkpoint:

... ckpt
start T1

b T1
c ...ckpt-

start
ckpt
end

L
O
G

start
of latest
valid
checkpoint

13

CS 245 Notes 08 73

Recovery process:
• Backwards pass (end of log  latest valid checkpoint start)

– construct set S of committed transactions
– undo actions of transactions not in S

• Undo pending transactions
– follow undo chains for transactions in

(checkpoint active list) - S
• Forward pass (latest checkpoint start  end of log)

– redo actions of S transactions

backward pass

forward pass
start

check-
point

CS 245 Notes 08 74

Real world actions

E.g., dispense cash at ATM
Ti = a1 a2 …... aj …... an

$

CS 245 Notes 08 75

Solution

(1) execute real-world actions after commit
(2) try to make idempotent

CS 245 Notes 08 76

ATM
Give$$
(amt, Tid, time)

$
give(amt)

lastTid:
time:

CS 245 Notes 08 77

Media failure (loss of non-volatile
storage)

A: 16

CS 245 Notes 08 78

Media failure (loss of non-volatile
storage)

A: 16

Solution: Make copies of data!

14

CS 245 Notes 08 79

Example 1 Triple modular redundancy

• Keep 3 copies on separate disks
• Output(X) --> three outputs
• Input(X) --> three inputs + vote

X1 X2 X3

CS 245 Notes 08 80

Example #2 Redundant writes,
Single reads

• Keep N copies on separate disks
• Output(X) --> N outputs
• Input(X) --> Input one copy

- if ok, done
- else try another one

 Assumes bad data can be detected

CS 245 Notes 08 81

Example #3: DB Dump + Log

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

Backup Database
• Just like checkpoint,

except that we write full database

CS 245 Notes 08 82

database

create backup database:
for i := 1 to DB_Size do

[read DB block i; write to backup]

[transactions run concurrently]

Backup Database
• Just like checkpoint,

except that we write full database

CS 245 Notes 08 83

database

create backup database:
for i := 1 to DB_Size do

[read DB block i; write to backup]

[transactions run concurrently]

• Restore from backup DB and log:
Similar to recovery from checkpoint and log

CS 245 Notes 08 84

When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery

15

CS 245 Notes 08 85

Summary
• Consistency of data
• One source of problems: failures

- Logging
- Redundancy

• Another source of problems:
Data Sharing..... next

