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CS 245: Database System 
Principles

Notes 08: Failure Recovery

Hector Garcia-Molina
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PART II
• Crash recovery (2 lectures) Ch.17[17]
• Concurrency control (3 lectures)       Ch.18[18]
• Transaction processing (2 lects) Ch.19[19]
• Information integration (1 lect) Ch.20[21,22]
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Integrity or correctness of data

• Would like data to be “accurate” or
“correct” at all times

EMP Name

White
Green
Gray

Age

52
3421

1
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Integrity or consistency constraints

• Predicates data must satisfy
• Examples:

- x is key of relation R
- x  y holds in R
- Domain(x) = {Red, Blue, Green}
 is valid index for attribute x of R
- no employee should make more than

twice the average salary
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Definition:

• Consistent state: satisfies all constraints
• Consistent DB: DB in consistent state
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Constraints (as we use here) may 
not capture “full correctness”

Example 1 Transaction constraints
• When salary is updated, 

new salary >  old salary
• When account record is deleted,

balance = 0
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Note: could be “emulated” by simple
constraints, e.g., 

account Acct # …. balance deleted?
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Example 2 Database should reflect
real world

DB
Reality

Constraints (as we use here) may 
not capture “full correctness”
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in any case, continue with constraints...

Observation: DB cannot be consistent 
always!

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2:   a2  a2 + 100

TOT   TOT + 100
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a2

TOT

..
50
..

1000

..
150

..
1000

..
150

..
1100

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2:   a2  a2 + 100

TOT   TOT + 100
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Transaction: collection of actions 
that preserve consistency

Consistent DB Consistent DB’T
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Big assumption:

If T starts with consistent state +
T executes in isolation

 T leaves consistent state
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Correctness (informally)

• If we stop running transactions,
DB left consistent

• Each transaction sees a consistent DB
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How can constraints be violated?

• Transaction bug
• DBMS bug
• Hardware failure

e.g., disk crash alters balance of account

• Data sharing
e.g.: T1: give 10% raise to programmers

T2: change programmers  systems analysts
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How can we prevent/fix violations?

• Chapter 8[17]: due to failures only
• Chapter 9[18]: due to data sharing only
• Chapter 10[19]: due to failures and sharing
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Will not consider:

• How to write correct transactions
• How to write correct DBMS
• Constraint checking & repair

That is, solutions studied here do not need 
to know constraints
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Chapter 8[17]:  Recovery

• First order of business:
Failure Model
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Events Desired
Undesired Expected

Unexpected
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Our failure model

processor

memory    disk

CPU

M D
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Desired events: see product manuals….

Undesired expected events:
System crash

- memory lost
- cpu halts, resets
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Desired events: see product manuals….

Undesired expected events:
System crash

- memory lost
- cpu halts, resets

Undesired Unexpected: Everything else!

that’s it!!
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Examples:
• Disk data is lost
• Memory lost without CPU halt
• CPU implodes wiping out universe….

Undesired Unexpected: Everything else!
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Is this model reasonable?

Approach: Add low level checks +
redundancy to increase
probability model holds

E.g.,  Replicate disk storage (stable store)
Memory parity
CPU checks
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Second order of business:

Storage hierarchy

Memory                  Disk

x x
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Operations:

• Input (x):   block containing x  memory
• Output (x): block containing x  disk
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Operations:

• Input (x):   block containing x  memory
• Output (x): block containing x  disk

• Read (x,t): do input(x) if necessary
t  value of x in block

• Write (x,t): do input(x) if necessary
value of x in block  t
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Key problem Unfinished transaction

Example Constraint: A=B
T1:  A   A  2

B   B  2
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T1: Read (A,t);  t  t2
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk
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T1: Read (A,t);  t  t2
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16
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T1: Read (A,t);  t  t2
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!
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• Need atomicity: execute all actions of
a transaction or none
at all
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One solution: undo logging  (immediate
modification)

due to: Hansel and Gretel, 1812 AD

CS 245 Notes 08 33

One solution: undo logging  (immediate
modification)

due to: Hansel and Gretel, 1812 AD

• Improved in 1813 AD to durable 
undo logging
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T1: Read (A,t);  t  t2 A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)
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T1: Read (A,t);  t  t2 A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>
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T1: Read (A,t);  t  t2 A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
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T1: Read (A,t);  t  t2 A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16
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T1: Read (A,t);  t  t2 A=B
Write (A,t);
Read (B,t);  t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16
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One “complication”
• Log is first written in memory
• Not written to disk on every action

memory
DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8
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One “complication”
• Log is first written in memory
• Not written to disk on every action

memory
DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

16
BAD STATE

# 1
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One “complication”
• Log is first written in memory
• Not written to disk on every action

memory
DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>
<T1, commit>

A: 8
B: 8

16
BAD STATE

# 2

<T1, B, 8>
<T1, commit>

...
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Undo logging rules
(1) For every action generate undo log

record (containing old value)
(2) Before x is modified on disk, log

records pertaining to x must be
on disk (write ahead logging: WAL)

(3) Before commit is flushed to log, all
writes of transaction must be
reflected on disk



8

CS 245 Notes 08 43

Recovery rules: Undo logging

• For every Ti   with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>

in log, do nothing
- Else   For all <Ti, X, v> in log:

write (X, v)
output (X )

Write <Ti, abort> to log
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Recovery rules: Undo logging

• For every Ti   with <Ti, start> in log:
- If <Ti,commit> or <Ti,abort>

in log, do nothing
- Else   For all <Ti, X, v> in log:

write (X, v)
output (X )

Write <Ti, abort> to log

IS THIS CORRECT??
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Recovery rules: Undo logging
(1) Let S = set of transactions with

<Ti, start> in log, but no
<Ti, commit> (or <Ti, abort>) record in log

(2) For each <Ti, X, v> in log,
in reverse order (latest  earliest) do:

- if Ti  S then    - write (X, v)
- output (X)

(3) For each Ti  S do
- write <Ti, abort> to log
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Question
• Can writes of <Ti, abort> records

be done in any order (in Step 3)?
– Example: T1 and T2 both write A
– T1 executed before T2
– T1 and T2 both rolled-back
– <T1, abort> written but NOT <T2, abort>?
– <T2, abort> written but NOT <T1, abort>?

T1 write A T2 write A time/log
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What if failure during recovery?
No problem!    Undo idempotent
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To discuss:
• Redo logging
• Undo/redo logging, why both?
• Real world actions
• Checkpoints
• Media failures
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Redo Logging
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First send Gretel up with no rope,
then Hansel goes up safely with rope!
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Redo logging (deferred modification)

T1: Read(A,t); t   t2; write (A,t);
Read(B,t); t   t2; write (B,t);
Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB
LOG
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Redo logging (deferred modification)

T1: Read(A,t); t   t2; write (A,t);
Read(B,t); t   t2; write (B,t);
Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
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Redo logging (deferred modification)

T1: Read(A,t); t   t2; write (A,t);
Read(B,t); t   t2; write (B,t);
Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16
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Redo logging (deferred modification)

T1: Read(A,t); t   t2; write (A,t);
Read(B,t); t   t2; write (B,t);
Output(A); Output(B)   

A: 8
B: 8

A: 8
B: 8

memory DB
LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16
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Redo logging rules
(1) For every action, generate redo log

record (containing new value)
(2) Before X is modified on disk (DB),

all log records for transaction that
modified X (including commit) must
be on disk

(3) Flush log at commit
(4) Write END record after DB updates

flushed to disk
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• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)
Output(X)

Recovery rules: Redo logging
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• For every Ti with <Ti, commit> in log:
– For all <Ti, X, v> in log:

Write(X, v)
Output(X)

Recovery rules: Redo logging

IS THIS CORRECT??
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(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward
order (earliest  latest) do:
- if Ti  S then  Write(X, v)

Output(X)
(3) For each Ti  S, write <Ti, end>

Recovery rules: Redo logging
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Combining <Ti, end> Records

• Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

CS 245 Notes 08 59

Combining <Ti, end> Records

• Want to delay DB flushes for hot objects

Say X is branch balance:
T1: ... update X...
T2: ... update X...
T3: ... update X...
T4: ... update X...

Actions:
write X
output X
write X
output X
write X
output X
write X
output X

combined <end> (checkpoint)
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Solution: Checkpoint     

Periodically:
(1) Do not accept new transactions
(2) Wait until all transactions finish
(3) Flush all log records to disk (log)
(4) Flush all buffers to disk (DB) (do not discard buffers)

(5) Write “checkpoint” record on disk (log)
(6) Resume transaction processing

• no <ti, end> actions>
•simple checkpoint
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Example: what to do at recovery?

Redo log (disk):

<
T1

,A
,1

6>

<
T1

,c
om

m
it>

Ch
ec

kp
oi

nt

<T
2,

B,
17

>

<
T2

,c
om

m
it>

<
T3

,C
,2

1>

Crash... ... ... ... ... ...
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Key drawbacks:

• Undo logging: cannot bring backup DB
copies up to date

• Redo logging: need to keep all modified 
blocks in memory 
until commit
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Solution: undo/redo logging!

Update  <Ti, Xid, New X val, Old X val>
page X
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Rules

• Page X can be flushed before or
after Ti commit

• Log record flushed before 
corresponding updated page (WAL)

• Flush at commit (log only) 
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Example: Undo/Redo logging
what to do at recovery?

log (disk):

<
ch

ec
kp

oi
nt

>

<
T1

, A
, 1

0,
 1

5>

<T
1,

 B
, 2

0,
 2

3>

<
T1

, c
om

m
it>

<
T2

, C
, 3

0,
 3

8>

<
T2

, D
, 4

0,
 4

1>

Crash... ... ... ... ... ...
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Non-quiesce checkpoint

L
O
G

for
undo dirty buffer

pool pages
flushed

Start-ckpt
active TR:
Ti,T2,...

end
ckpt

.........

...
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Non-quiesce checkpoint
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memory
checkpoint process:
for i := 1 to M do

output(buffer i)

[transactions run concurrently]
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Examples what to do at recovery time?

no T1 commit

L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...
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Examples what to do at recovery time?

no T1 commit

L
O
G

T1,-
a ... Ckpt

T1
... Ckpt

end ... T1-
b...

 Undo T1  (undo a,b)
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Example

L
O
G ... T1

a ... ... T1
b ... ... T1

c ... T1
cmt ...ckpt-

end
ckpt-s
T1
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Example

L
O
G ... T1

a ... ... T1
b ... ... T1

c ... T1
cmt ...ckpt-

end
ckpt-s
T1

 Redo T1: (redo b,c)
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Recover  From Valid Checkpoint:

... ckpt
start ... ... T1

b ... ... T1
c ...ckpt-

start
ckpt
end

L
O
G

start
of latest
valid
checkpoint
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Recovery process:
• Backwards pass (end of log  latest valid checkpoint start)

– construct set S of committed transactions
– undo actions of transactions not in S

• Undo pending transactions
– follow undo chains for transactions in

(checkpoint active list) - S
• Forward pass (latest checkpoint start  end of log)

– redo actions of S transactions

backward pass

forward pass
start

check-
point
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Real world actions

E.g., dispense cash at ATM
Ti = a1 a2 …... aj …... an

$
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Solution

(1) execute real-world actions after commit
(2) try to make idempotent
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ATM
Give$$
(amt, Tid, time)

$
give(amt)

lastTid:
time:
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Media failure (loss of non-volatile
storage)

A: 16
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Media failure (loss of non-volatile
storage)

A: 16

Solution: Make copies of data!
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Example 1 Triple modular redundancy

• Keep 3 copies on separate disks
• Output(X) --> three outputs
• Input(X) --> three inputs + vote

X1 X2 X3
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Example #2 Redundant writes,
Single reads

• Keep N copies on separate disks
• Output(X) --> N outputs
• Input(X) --> Input one copy

- if ok, done
- else try another one

 Assumes bad data can be detected
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Example #3: DB Dump + Log

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

Backup Database
• Just like checkpoint,

except that we write full database
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database

create backup database:
for i := 1 to DB_Size do

[read DB block i; write to backup]

[transactions run concurrently]

Backup Database
• Just like checkpoint,

except that we write full database

CS 245 Notes 08 83

database

create backup database:
for i := 1 to DB_Size do

[read DB block i; write to backup]

[transactions run concurrently]

• Restore from backup DB and log:
Similar to recovery from checkpoint and log
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When can log be discarded?

check-
point

db
dump

last
needed
undo

not needed for
media recovery redo

not needed for undo
after system failure

not needed for
redo after system failure

log

time

last
needed
undo

not needed for
media recovery
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Summary
• Consistency of data
• One source of problems: failures

- Logging
- Redundancy

• Another source of problems:
Data Sharing..... next


