
  



  

This presentation has been 
modified from

its original version.
It has been modified to

fit your screen.



  

TRIGGER WARNING

THIS TALK IS DESIGNED TO OFFEND THE 
FOLLOWING GROUPS:

PEOPLE WHO USE WEAK PASSWORDS
USERS OF WEAK HASHING ALGORITHMS

 AMD GPU FANBOYS
BITCOIN COLLECTORS

JOHN USERS & DEVELOPERS 

YOU HAVE BEEN WARNED.



  

A Little About Me

 hashcat beta tester

 Tor relay and bridge operator

 ANSI art enthusiast

 "not affiliated with the USA'S NSA"    
- HardenedBSD.org Donor's page

 "I think you're a Kremlin Troll."    
- John "20committee" Schindler



  

Quick Summary

 Basics of why and how

 Summary and benchmarks of attack 
types

 Lots of charts

 Analysis

 Q&A

 But first...



  

Top 10 Commonly Used Passes



  

Why Would Anyone Crack 
Passes?

 Let's start with good reasons
 Security research (Whether internal or 
external)

 Raising awareness (See Nate Anderson's 
"How I became a password cracker")

 Password recovery
 Hello, law enforcement



  

Why Would Anyone Crack 
Passes? (cont.)

 Now for the bad reasons:
 Account hijacking

 Accessing protected wifi

 rming script kiddies
 Ok, there's nothing actually wrong with this 
reason.



  

What Is A Password Hash?

 A hash is a one way function

 In this context, it's used to store 
passwords

 If the database gets stolen, user 
passes are not stored in plaintext

 Hashing buys your users time to change 
their passwords in case of a breach, 
so pick your algorithms well



  

Basics of Hashing Algorithms 

 Unsalted = OK in 1977, not OK now

 Salting thwarts rainbow tables, which were 
all the rage in 1998
 Rainbow tables = Pre-calculate hashes, store 
the results

 Tunable iteration count = You can keep up 
with Moore's Law

 tl;dr: bcrypt/scrypt/crypt(3) or quit your 
day job

 Examples of hashes on the next slide



  

Examples of Hashes

 MD5: 5f4dcc3b5aa765d61d8327deb882cf99

 Salted SHA1: 
f0f0a169b6e32e99f4c6442754c91ad051757
d85:629875d55

 bcrypt: 
$2a$08$qtju4ihIO264d9pUal5Ct.aicv4oGW
6o/.ZT0SXpSHVEMUEjH.qCK

 All of these are hashes for 
"password"



  

What Is Hashcat?

 hashcat is an offline password cracker 
that uses CPUs

 oclHashcat and cudaHashcat are the GPU 
(video card) versions for AMD and NVIDIA 
cards

 Supports over 140 different algorithms 
(With more being added all the time)

 Supports up to 128 GPUs

 This talk will focus on GPU-enabled 
password cracking, despite the title



  

Why Use GPUs?

This infographic has no basis in fact

I cracked these in < 1 sec



  

Hardware Considerations

 unix-ninja does a great job of 
summarizing the hardware side of things
 http://www.unix-
ninja.com/p/Building_a_Cracking_Rig_for_Hash
cat/

 The body of knowledge for hardware could 
take up a speaking slot in itself, but 
I'll dispense some GPU wisdom

– A current example is Evil_Mog's recent 
DerbyCon talk: 
https://www.youtube.com/watch?v=1MiY44KS-y4



  

Hardware Considerations 
(cont.)

 Only use reference design cards

 If buying new: NVIDIA > AMD
 NVIDIA closed the performance gap and uses 1/2 
the power of AMD's cards

 ... But more beta testers have AMD cards



  

Hardware Considerations 
(cont.)

The Bitcoin mining rig conversion 
strategy I'm about to lay out might get 

me stabbed, but YOLO



  

The Dagmar Challenge

 In the late 90s, Dagmar's cracking 
experiments lead to him cracking 87% of 
the hashes from his employer in an hour 
under the following conditions:

 DES hashes

 Sub-500MHz AMD processor

 JtR with CPU-specific optimizations
 Rough speed was ~10 KH/s

 Dictionary attacks only
 He had dictionaries for multiple languages



  

Testing Conventions

 Debian Wheezy with the nvidia.com driver

 NVIDIA GTX 650 Ti BOOST (Benched at 1739 
MH/s; real world is between 230-400 MH/s)

 MD5s from Battlefield Heroes Beta (550k 
users).csv

 Stock rulesets and mask files

 Unless otherwise noted



  

Testing Conventions (cont.)

 rockyou.txt (134MB, 14,344,391 words)

 Also ordered by popularity

 crackstation-human-only.txt (684MB, 
63,941,069 words)

 holywow.txt (3.1GB, 311,087,678 words)

 holywow2.txt (859MB, 81,286,807 words)



  

Attack Types

 Dictionary

 Combinator

 Rules

 Mask



  

Dictionary

 Works best with passes from previous 
breaches

 Still, it's REALLY inefficient

 Also useful for validating founds

 rockyou.txt recovers 28.25% in 12 
seconds

 crackstation-human-only recovers 
35.79% in 19 seconds



  

Dictionary (cont.)

 Clearly humanity has made progress in 
choosing passwords since the late 90s
 Not many people use "love," "sex," 
"secret," or "god" these days

 ...But password cracking has made 
even bigger gains in terms of speed

 We can get 87%, it just takes 
planning and GPU cycles



  

Combinator

 Tries every combo of words between 2 
dictionaries

 Can do 3 dictionaries using hashcat-
utils, which is the archnemesis of 
DiceWare
 This is a solid DiceWare intro: 
https://www.youtube.com/watch?v=t7a56mC8E6k

 Can also apply rules to either or both 
dictionaries
 Use combinator.rule to get passes-like-this



  

Why Combinator Didn't Get 
Tested

 rockyou.txt x 2 would take ~5 days

 rockyou.txt + crackstation-human-
only.txt = ~22 days

 crackstation-human-only.txt x 2 = ~87 
days



  

Rule-based attacks

 Mangles words into different words

 Can use multiple rulesets at once
 They are executed together, not in order

 Compatible with John the Ripper and 
PasswordsPro

 Examples:
 ":" tries "password" without modification

 "c" turns "password" into "Password"

 "c sa@" turns "password" into "P@ssword"

 "c sa@ $1" turns "password" into "P@ssword1"



  

Benchmark Explainer

 The next few slides (And some others 
later on) have tables of benchmark 
results

 The dictionary specified in the title of 
each slide was used in combination with 
the rulesets in the "Name" column

 Sometimes a smaller ruleset will find 
more passes than a bigger ruleset with 
more computationally complex rules

 A real attacker wouldn't crack like this



  

rockyou.txt + rule sets 
(1/3)

☺InsidePro-HashManager



  

rockyou.txt + rule sets 
(2/3)

 ☻ InsidePro-PasswordsPro

 ♥ T0XlC_insert_00-99_1950-2050_toprules_0_F



  

rockyou.txt + rule sets 
(3/3)

 ♦ Incisive-leetspeak       T0XlC-insert_top_100_passwords_1_G♣

 ♠ T0XlC_insert_space_and_special_0_F



  

crackstation-human-only + 
rule sets (1/3)

 ≡ InsidePro-HashManager

 ♫ InsidePro-PasswordsPro



  

crackstation-human-only + 
rule sets (2/3)

 ☼ T0XlC-insert_00-99_1950-2050_toprules_0_F

 ☺ toggles5 cracks 11 more hashes than toggles4



  

crackstation-human-only + 
rule sets (3/3)

 ☻ T0XlC-insert_top_100_passwords_1_G

 ♥ T0XlC-insert_space_and_special_0_F



  

Ruleset Post-Mortem

 'sort -u | wc -l' all the things!

 rockyou.txt + rules = 76.86%

 crackstation-human-only.txt + rules = 
81.74%

 Combined founds from both = 81.82%
 To find more, we must get creative...



  

Mask Attack

 Targeted brute forcing

 We know how humans create passes due 
to breaches

 ?u?s?l?l?l?l?l?l?d will crack 
"P@ssword1"

 Can create up to 4 custom character 
sets



  

Mask Attack Syntax

 ?u = uppercase (A to Z)

 ?l = lowercase (a to z)

 ?d digits (0 to 9)

 ?s = symbols (`~!@#$%^&*()-_=+
{[}]|\:;-'<,>.?/)

 ?a = all of the above

 ?b = binary (0x00 to 0xff)



  

Mask Results

All totals are cumulative

73.90% = easy passes found

This + other founds = 87.73%

Challenge = met, we can move on. But 
first...



  

Intermission



  

Ok, now what?
 Both holywows were fed to PACK

 https://thesprawl.org/projects/pack/

 rulesgen.py made a 50GB and 15GB file

 Sorting left me with 48GB and 12GB of 
rules ordered by popularity
 sort | uniq -c | sort -rnk1 | head -nXXXX | 
awk '{print $2}' > holywow-[$RULESET].rule

 This still only brought the total found to 
88.31%

 Ready for more ANSI spreadsheets?
 Of course you are



  

rockyou vs holywow



  

crackstation-human-only vs 
holywow



  

   Ph'nglui mnlw'nafh 
Cthulhu R'lyeh wgah'nagl 

fhtagn
 Any mask with over 100k matches was 
included

 Both holywows contained large (20+ 
char) masks

 21 char lowercase would take ~21 
trillion years
 That's over 518 undecillion combos

 33.317 ZH/s to try every combo in 6 
months



  

Faked Mask Benchmarks

How I cheated:

awk -F, '{print $1}' holywow-100k.masks > 
holywow.1

grep -f holywow.1 battlefield.masks | awk -F, 
'{ sum+=$2} END {print sum}'



  

What Would A Real Attacker 
Do Next?

 Put founds in a dictionary, run attacks 

 Dictionaries for alternate languages

 Keyboard walks (e.g. asdf, qwerty)

 Make a dictionary using WordHound

 Tmesis (Inserts words into other words)

    123456asdf

    a123456sdf

    as123456df

    asd123456f

    asdf123456



  

What's Left?

 PACK analysis

 Credits

 Q/A?



  

Length (PACK)

 8: 29% (122967) 12: 03% (15483) 18: 00% (195) 2: 00% (4)

 9: 16% (66769)  13: 01% (7063)  19: 00% (96)  1: 00% (2)

 6: 15% (65844)  14: 00% (4000)  20: 00% (75) 21: 00% (2)

 7: 13% (57553)  15: 00% (2094)   5: 00% (9)  22: 00% (2)

10: 11% (48658)  16: 00% (1090)   3: 00% (15) 23: 00% (2) 

11: 05% (24425)  17: 00% (332)    4: 00% (8)  24: 00% (1)

                                              26: 00% (1)



  

Character Sets Used (PACK)
        loweralphanum: 53% (222821)

           loweralpha: 24% (103004)

              numeric: 08% (35684)

        mixedalphanum: 07% (32957)

           mixedalpha: 01% (7484)

 loweralphaspecialnum: 01% (4576)

        upperalphanum: 00% (3384)

                  all: 00% (2207)

    loweralphaspecial: 00% (1935)

           upperalpha: 00% (1437)

    mixedalphaspecial: 00% (580)

           specialnum: 00% (375)

 upperalphaspecialnum: 00% (174)

    upperalphaspecial: 00% (51)

              special: 00% (21)



  

Password Complexity (PACK)

  digit: min(0) max(24) 
016091084927016091084927

  lower: min(0) max(23) 
overmyheadbetteroffdead

  upper: min(0) max(26) 
QWERTYUIOPASDFGHJKLZXCVBNM

special: min(0) max(12) ********** 
and .,..,..,.,



  

Simple Masks (PACK)

        stringdigit: 44% (184594)

             string: 26% (111925)

              digit: 08% (35684)

          othermask: 07% (29591)

  stringdigitstring: 06% (26103)

        digitstring: 03% (16377)

   digitstringdigit: 01% (6258)

 stringspecialdigit: 00% (1975)

stringspecialstring: 00% (1451)

 stringdigitspecial: 00% (1011)

      stringspecial: 00% (590)



  

Advanced Masks (PACK)

    ?l?l?l?l?l?l?l?l: 05% (24525)

        ?l?l?l?l?l?l: 05% (23361)

    ?l?l?l?l?l?l?d?d: 04% (20352)

      ?l?l?l?l?l?l?l: 04% (18370)

        ?d?d?d?d?d?d: 03% (13988)

  ?l?l?l?l?l?l?l?l?l: 03% (13944)

    ?d?d?d?d?d?d?d?d: 02% (10729)

?l?l?l?l?l?l?l?l?l?l: 02% (10346)

  ?l?l?l?l?l?l?l?d?d: 02% (9202)

    ?l?l?l?l?l?l?l?d: 02% (8846)

    ?l?l?l?l?l?d?d?d: 01% (8008)

    ?l?l?l?l?d?d?d?d: 01% (7927)

        ?l?l?l?l?l?d?d: 01% (7696)

    ?l?l?l?l?l?l?d?d?d: 01% (7054)

  ?l?l?l?l?l?l?l?l?d?d: 01% (6766)

    ?l?l?l?l?l?l?l?l?d: 01% (6491)

          ?l?l?l?l?d?d: 01% (5793)

  ?l?l?l?l?l?l?d?d?d?d: 01% (5575)

    ?l?l?l?l?l?d?d?d?d: 01% (5563)

        ?l?l?l?l?l?l?d: 01% (5502)

?l?l?l?l?l?l?l?l?l?l?l: 01% (5470)

        ?d?d?d?d?d?d?d: 01% (5408)

          ?l?l?l?l?l?d: 01% (5067)



  

Protecting Yourself And Your 
Users

 Developers: Use password hashing algorithms 
like bcrypt and scrypt. Almost all of your 
other choices are riddled with peril

 Users: Randomly generate all passwords, store 
in either a password manager (If you're a 
mere mortal) or an encrypted text file (If 
you're a wizard)
 Use good passphrases (Maybe look at Diceware) in 
situations when you can't avoid using a memorable 
pass

 Misc: LUKS containers use 4096 rounds of SHA1 
by default. I changed the LUKS header on my 
containers to use 9001 rounds of SHA256



  

What I Covered Today

 Basics of hashing algorithms

 Beginner level hashcat info

 Lots of benchmarking

 Tasteful chiptune intermezzo

 Even more benchmarking

 Analysis of the test hash dump

 Very light amounts of Blue Teaming
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Contact

Send any questions, comments, death threats, 
and/or world domination conspiracies to:

E-mail: root@abigisp.com

PGP: https://abigisp.com/key.txt

Key ID: 0xF3C1BD78

Fingerprint: D748 92B2 FBC7 4B86 65B4 0210 DA0B 
584C F3C1 BD78

Twitter: @_NSAKEY

GitHub: NSAKEY



  

The End?
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