

This presentation has been
modified from

its original version.
It has been modified to

fit your screen.

TRIGGER WARNING

THIS TALK IS DESIGNED TO OFFEND THE
FOLLOWING GROUPS:

PEOPLE WHO USE WEAK PASSWORDS
USERS OF WEAK HASHING ALGORITHMS

 AMD GPU FANBOYS
BITCOIN COLLECTORS

JOHN USERS & DEVELOPERS

YOU HAVE BEEN WARNED.

A Little About Me

 hashcat beta tester

 Tor relay and bridge operator

 ANSI art enthusiast

 "not affiliated with the USA'S NSA"
- HardenedBSD.org Donor's page

 "I think you're a Kremlin Troll."
- John "20committee" Schindler

Quick Summary

 Basics of why and how

 Summary and benchmarks of attack
types

 Lots of charts

 Analysis

 Q&A

 But first...

Top 10 Commonly Used Passes

Why Would Anyone Crack
Passes?

 Let's start with good reasons
 Security research (Whether internal or
external)

 Raising awareness (See Nate Anderson's
"How I became a password cracker")

 Password recovery
 Hello, law enforcement

Why Would Anyone Crack
Passes? (cont.)

 Now for the bad reasons:
 Account hijacking

 Accessing protected wifi

 rming script kiddies
 Ok, there's nothing actually wrong with this
reason.

What Is A Password Hash?

 A hash is a one way function

 In this context, it's used to store
passwords

 If the database gets stolen, user
passes are not stored in plaintext

 Hashing buys your users time to change
their passwords in case of a breach,
so pick your algorithms well

Basics of Hashing Algorithms

 Unsalted = OK in 1977, not OK now

 Salting thwarts rainbow tables, which were
all the rage in 1998
 Rainbow tables = Pre-calculate hashes, store
the results

 Tunable iteration count = You can keep up
with Moore's Law

 tl;dr: bcrypt/scrypt/crypt(3) or quit your
day job

 Examples of hashes on the next slide

Examples of Hashes

 MD5: 5f4dcc3b5aa765d61d8327deb882cf99

 Salted SHA1:
f0f0a169b6e32e99f4c6442754c91ad051757
d85:629875d55

 bcrypt:
$2a$08$qtju4ihIO264d9pUal5Ct.aicv4oGW
6o/.ZT0SXpSHVEMUEjH.qCK

 All of these are hashes for
"password"

What Is Hashcat?

 hashcat is an offline password cracker
that uses CPUs

 oclHashcat and cudaHashcat are the GPU
(video card) versions for AMD and NVIDIA
cards

 Supports over 140 different algorithms
(With more being added all the time)

 Supports up to 128 GPUs

 This talk will focus on GPU-enabled
password cracking, despite the title

Why Use GPUs?

This infographic has no basis in fact

I cracked these in < 1 sec

Hardware Considerations

 unix-ninja does a great job of
summarizing the hardware side of things
 http://www.unix-
ninja.com/p/Building_a_Cracking_Rig_for_Hash
cat/

 The body of knowledge for hardware could
take up a speaking slot in itself, but
I'll dispense some GPU wisdom

– A current example is Evil_Mog's recent
DerbyCon talk:
https://www.youtube.com/watch?v=1MiY44KS-y4

Hardware Considerations
(cont.)

 Only use reference design cards

 If buying new: NVIDIA > AMD
 NVIDIA closed the performance gap and uses 1/2
the power of AMD's cards

 ... But more beta testers have AMD cards

Hardware Considerations
(cont.)

The Bitcoin mining rig conversion
strategy I'm about to lay out might get

me stabbed, but YOLO

The Dagmar Challenge

 In the late 90s, Dagmar's cracking
experiments lead to him cracking 87% of
the hashes from his employer in an hour
under the following conditions:

 DES hashes

 Sub-500MHz AMD processor

 JtR with CPU-specific optimizations
 Rough speed was ~10 KH/s

 Dictionary attacks only
 He had dictionaries for multiple languages

Testing Conventions

 Debian Wheezy with the nvidia.com driver

 NVIDIA GTX 650 Ti BOOST (Benched at 1739
MH/s; real world is between 230-400 MH/s)

 MD5s from Battlefield Heroes Beta (550k
users).csv

 Stock rulesets and mask files

 Unless otherwise noted

Testing Conventions (cont.)

 rockyou.txt (134MB, 14,344,391 words)

 Also ordered by popularity

 crackstation-human-only.txt (684MB,
63,941,069 words)

 holywow.txt (3.1GB, 311,087,678 words)

 holywow2.txt (859MB, 81,286,807 words)

Attack Types

 Dictionary

 Combinator

 Rules

 Mask

Dictionary

 Works best with passes from previous
breaches

 Still, it's REALLY inefficient

 Also useful for validating founds

 rockyou.txt recovers 28.25% in 12
seconds

 crackstation-human-only recovers
35.79% in 19 seconds

Dictionary (cont.)

 Clearly humanity has made progress in
choosing passwords since the late 90s
 Not many people use "love," "sex,"
"secret," or "god" these days

 ...But password cracking has made
even bigger gains in terms of speed

 We can get 87%, it just takes
planning and GPU cycles

Combinator

 Tries every combo of words between 2
dictionaries

 Can do 3 dictionaries using hashcat-
utils, which is the archnemesis of
DiceWare
 This is a solid DiceWare intro:
https://www.youtube.com/watch?v=t7a56mC8E6k

 Can also apply rules to either or both
dictionaries
 Use combinator.rule to get passes-like-this

Why Combinator Didn't Get
Tested

 rockyou.txt x 2 would take ~5 days

 rockyou.txt + crackstation-human-
only.txt = ~22 days

 crackstation-human-only.txt x 2 = ~87
days

Rule-based attacks

 Mangles words into different words

 Can use multiple rulesets at once
 They are executed together, not in order

 Compatible with John the Ripper and
PasswordsPro

 Examples:
 ":" tries "password" without modification

 "c" turns "password" into "Password"

 "c sa@" turns "password" into "P@ssword"

 "c sa@ $1" turns "password" into "P@ssword1"

Benchmark Explainer

 The next few slides (And some others
later on) have tables of benchmark
results

 The dictionary specified in the title of
each slide was used in combination with
the rulesets in the "Name" column

 Sometimes a smaller ruleset will find
more passes than a bigger ruleset with
more computationally complex rules

 A real attacker wouldn't crack like this

rockyou.txt + rule sets
(1/3)

☺InsidePro-HashManager

rockyou.txt + rule sets
(2/3)

 ☻ InsidePro-PasswordsPro

 ♥ T0XlC_insert_00-99_1950-2050_toprules_0_F

rockyou.txt + rule sets
(3/3)

 ♦ Incisive-leetspeak T0XlC-insert_top_100_passwords_1_G♣

 ♠ T0XlC_insert_space_and_special_0_F

crackstation-human-only +
rule sets (1/3)

 ≡ InsidePro-HashManager

 ♫ InsidePro-PasswordsPro

crackstation-human-only +
rule sets (2/3)

 ☼ T0XlC-insert_00-99_1950-2050_toprules_0_F

 ☺ toggles5 cracks 11 more hashes than toggles4

crackstation-human-only +
rule sets (3/3)

 ☻ T0XlC-insert_top_100_passwords_1_G

 ♥ T0XlC-insert_space_and_special_0_F

Ruleset Post-Mortem

 'sort -u | wc -l' all the things!

 rockyou.txt + rules = 76.86%

 crackstation-human-only.txt + rules =
81.74%

 Combined founds from both = 81.82%
 To find more, we must get creative...

Mask Attack

 Targeted brute forcing

 We know how humans create passes due
to breaches

 ?u?s?l?l?l?l?l?l?d will crack
"P@ssword1"

 Can create up to 4 custom character
sets

Mask Attack Syntax

 ?u = uppercase (A to Z)

 ?l = lowercase (a to z)

 ?d digits (0 to 9)

 ?s = symbols (`~!@#$%^&*()-_=+
{[}]|\:;-'<,>.?/)

 ?a = all of the above

 ?b = binary (0x00 to 0xff)

Mask Results

All totals are cumulative

73.90% = easy passes found

This + other founds = 87.73%

Challenge = met, we can move on. But
first...

Intermission

Ok, now what?
 Both holywows were fed to PACK

 https://thesprawl.org/projects/pack/

 rulesgen.py made a 50GB and 15GB file

 Sorting left me with 48GB and 12GB of
rules ordered by popularity
 sort | uniq -c | sort -rnk1 | head -nXXXX |
awk '{print $2}' > holywow-[$RULESET].rule

 This still only brought the total found to
88.31%

 Ready for more ANSI spreadsheets?
 Of course you are

rockyou vs holywow

crackstation-human-only vs
holywow

 Ph'nglui mnlw'nafh
Cthulhu R'lyeh wgah'nagl

fhtagn
 Any mask with over 100k matches was
included

 Both holywows contained large (20+
char) masks

 21 char lowercase would take ~21
trillion years
 That's over 518 undecillion combos

 33.317 ZH/s to try every combo in 6
months

Faked Mask Benchmarks

How I cheated:

awk -F, '{print $1}' holywow-100k.masks >
holywow.1

grep -f holywow.1 battlefield.masks | awk -F,
'{ sum+=$2} END {print sum}'

What Would A Real Attacker
Do Next?

 Put founds in a dictionary, run attacks

 Dictionaries for alternate languages

 Keyboard walks (e.g. asdf, qwerty)

 Make a dictionary using WordHound

 Tmesis (Inserts words into other words)

 123456asdf

 a123456sdf

 as123456df

 asd123456f

 asdf123456

What's Left?

 PACK analysis

 Credits

 Q/A?

Length (PACK)

 8: 29% (122967) 12: 03% (15483) 18: 00% (195) 2: 00% (4)

 9: 16% (66769) 13: 01% (7063) 19: 00% (96) 1: 00% (2)

 6: 15% (65844) 14: 00% (4000) 20: 00% (75) 21: 00% (2)

 7: 13% (57553) 15: 00% (2094) 5: 00% (9) 22: 00% (2)

10: 11% (48658) 16: 00% (1090) 3: 00% (15) 23: 00% (2)

11: 05% (24425) 17: 00% (332) 4: 00% (8) 24: 00% (1)

 26: 00% (1)

Character Sets Used (PACK)
 loweralphanum: 53% (222821)

 loweralpha: 24% (103004)

 numeric: 08% (35684)

 mixedalphanum: 07% (32957)

 mixedalpha: 01% (7484)

 loweralphaspecialnum: 01% (4576)

 upperalphanum: 00% (3384)

 all: 00% (2207)

 loweralphaspecial: 00% (1935)

 upperalpha: 00% (1437)

 mixedalphaspecial: 00% (580)

 specialnum: 00% (375)

 upperalphaspecialnum: 00% (174)

 upperalphaspecial: 00% (51)

 special: 00% (21)

Password Complexity (PACK)

 digit: min(0) max(24)
016091084927016091084927

 lower: min(0) max(23)
overmyheadbetteroffdead

 upper: min(0) max(26)
QWERTYUIOPASDFGHJKLZXCVBNM

special: min(0) max(12) **********
and .,..,..,.,

Simple Masks (PACK)

 stringdigit: 44% (184594)

 string: 26% (111925)

 digit: 08% (35684)

 othermask: 07% (29591)

 stringdigitstring: 06% (26103)

 digitstring: 03% (16377)

 digitstringdigit: 01% (6258)

 stringspecialdigit: 00% (1975)

stringspecialstring: 00% (1451)

 stringdigitspecial: 00% (1011)

 stringspecial: 00% (590)

Advanced Masks (PACK)

 ?l?l?l?l?l?l?l?l: 05% (24525)

 ?l?l?l?l?l?l: 05% (23361)

 ?l?l?l?l?l?l?d?d: 04% (20352)

 ?l?l?l?l?l?l?l: 04% (18370)

 ?d?d?d?d?d?d: 03% (13988)

 ?l?l?l?l?l?l?l?l?l: 03% (13944)

 ?d?d?d?d?d?d?d?d: 02% (10729)

?l?l?l?l?l?l?l?l?l?l: 02% (10346)

 ?l?l?l?l?l?l?l?d?d: 02% (9202)

 ?l?l?l?l?l?l?l?d: 02% (8846)

 ?l?l?l?l?l?d?d?d: 01% (8008)

 ?l?l?l?l?d?d?d?d: 01% (7927)

 ?l?l?l?l?l?d?d: 01% (7696)

 ?l?l?l?l?l?l?d?d?d: 01% (7054)

 ?l?l?l?l?l?l?l?l?d?d: 01% (6766)

 ?l?l?l?l?l?l?l?l?d: 01% (6491)

 ?l?l?l?l?d?d: 01% (5793)

 ?l?l?l?l?l?l?d?d?d?d: 01% (5575)

 ?l?l?l?l?l?d?d?d?d: 01% (5563)

 ?l?l?l?l?l?l?d: 01% (5502)

?l?l?l?l?l?l?l?l?l?l?l: 01% (5470)

 ?d?d?d?d?d?d?d: 01% (5408)

 ?l?l?l?l?l?d: 01% (5067)

Protecting Yourself And Your
Users

 Developers: Use password hashing algorithms
like bcrypt and scrypt. Almost all of your
other choices are riddled with peril

 Users: Randomly generate all passwords, store
in either a password manager (If you're a
mere mortal) or an encrypted text file (If
you're a wizard)
 Use good passphrases (Maybe look at Diceware) in
situations when you can't avoid using a memorable
pass

 Misc: LUKS containers use 4096 rounds of SHA1
by default. I changed the LUKS header on my
containers to use 9001 rounds of SHA256

What I Covered Today

 Basics of hashing algorithms

 Beginner level hashcat info

 Lots of benchmarking

 Tasteful chiptune intermezzo

 Even more benchmarking

 Analysis of the test hash dump

 Very light amounts of Blue Teaming

References

 https://hashcat.net
 https://hashcat.net/events/

 https://hashcat.net/wiki/

 http://www.snipview.com/q/Names%20of%20large%20numbers

 http://thesprawl.org/projects/pack/

 https://bitbucket.org/mattinfosec/wordhound

 http://splashdata.com/press/PR111121.htm

 http://splashdata.com/press/pr121023.htm

 http://splashdata.com/press/worstpasswords2013.htm

 http://splashdata.com/press/worst-passwords-of-2014.htm

 https://abigisp.com/talks/hashcat/

Credits

Arnie Holder - chiptune enabler

atom - hashcat developer

benthemeek - Guinea Pig

Dagmar - Expectation & Scope Setter

Elonka - Slides Coach

epixoip - Hashing Historian

iphelix - PACK Author

NoFault - Number Cruncher

RangerZ - Large Numbers Consultant

Trash80 - Created "Girl From Intermission"

Contact

Send any questions, comments, death threats,
and/or world domination conspiracies to:

E-mail: root@abigisp.com

PGP: https://abigisp.com/key.txt

Key ID: 0xF3C1BD78

Fingerprint: D748 92B2 FBC7 4B86 65B4 0210 DA0B
584C F3C1 BD78

Twitter: @_NSAKEY

GitHub: NSAKEY

The End?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

