

Towards Subject Agnostic Affective Emotion Recognition

Amit Kumar Jaiswal¹ Haiming Liu² Prayag Tiwari³

¹University of Surrey, UK

²University of Southampton, UK

³Halmstad University, Sweden

October 22, 2023

Outline

- 1 Introduction & Problem
- 2 Background
- 3 Our Approach - Meta-learning based Augmented Domain Adaptation
- 4 Contributions
- 5 Training Settings
- 6 Experiment
- 7 Conclusion

Introduction & Problem

Challenges

- Occurrence of distributional shift from the non-stationary nature of EEG signals.
- Limited theoretical background for (affective) emotion recognition in the presence of domain shift in data.
- Large distributional shifts between domains limit generalisation to unseen domains.
- Typical ML approaches is difficult to utilise for subject-agnostic EEG-driven emotion recognition due to structural variability across different domains.

Problem

- Learning from Multi-source data
 - Multimodal EEG data of emotional video clips
 - We refer to each data source a domain or a subject
- Identify emotions during realistic data (EEG) shifts

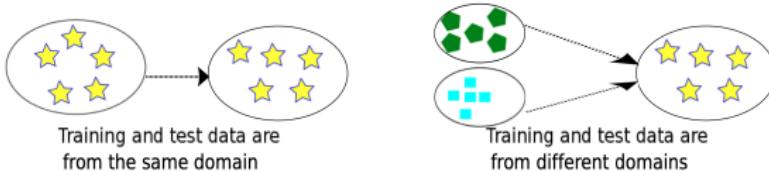
Introduction & Problem

Domain Adaptation & Generalisation

- Domain adaptation (DA) [Ganin 2015] and domain generalisation (DG) [Muandet 2013] are two classes of approaches to mitigate the impact of discrepancies among distributions of the training and testing data from varied sources.
- We refer the distribution of the training data drawn from the source domain, and the testing data is drawn from target domain.
 - DA: Leverage data from a single or multiple source domains including limited data from the target domain from training
 - DG: Leverage data from multiple source domains for training, where no training data from the target domain.

Background

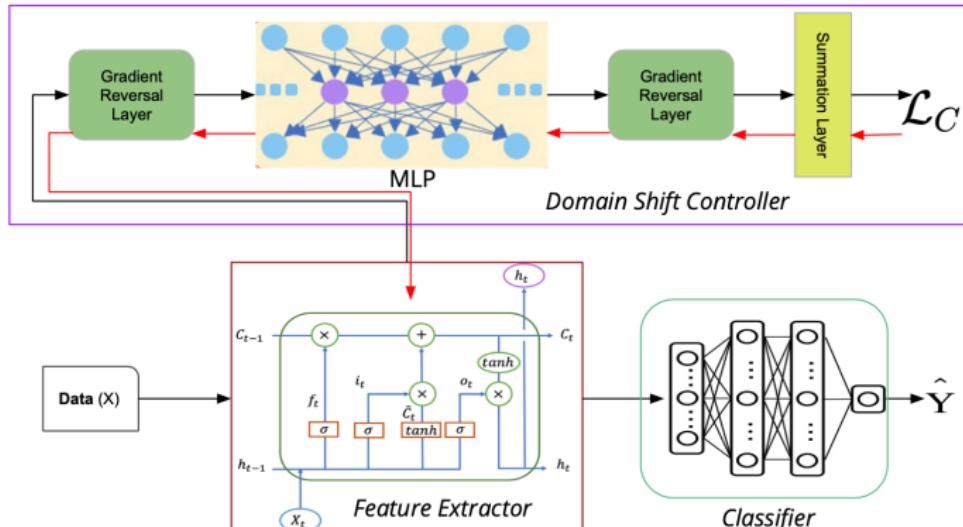
- **Domains** are modelled as probability distributions over an input space



- **Domain adaptation** approaches to modelling scenarios, where a trained model on a source domain performing a certain task (classification, regression, etc.), but then applied to a different task in a different target domain.
 - **Input:** A lot of labelled data in the source domain and only unlabelled data in the target domain.
 - **Output:** A common representation between source domain data and target domain data and a model on the new representation for use in the target domain.
- **Distributional shift:** Representations learned in the source domain might not work well in the target domain

Our Approach - Graphical Overview

- We introduce, a **meta-learning based augmented domain adaptation (MeLaDA)** which includes
 - a sum-decomposable domain shift controller $D_C(\omega)$, which leverages the features extracted by $F(\theta)$ to assess the dissimilarity between the current domain and the shift-independent domain
 - a temporal multi-layer perceptron (MLP), which consists of a feature extractor $F(\theta)$ classifier $C(\phi)$



Our Approach - Theoretical Basis

- **Problem Settings:** The input space for EEG data as \mathcal{E}_I , and the output space as \mathcal{E}_O .
 - A domain \mathcal{D} is a joint distribution $P_{\mathcal{E}_I, \mathcal{E}_O}$ over the space $\mathcal{E}_I \times \mathcal{E}_O$.
 - Samples of a domain S_i refers to a set of $\{\mathcal{E}_{Ii}, \mathcal{E}_{Oi}\}$
 - A mapping function \mathcal{Q} to transform one domain into another while minimising the divergence ($d(\cdot, \cdot)$) across the domains
 - Alignment technique: $\mathcal{Q}_{da} = \arg \min_{\mathcal{Q}} d(\mathcal{Q}(S_i), \mathcal{Q}(S_j))$

Shift-independent Domain

- Multi-source domain adaptation (or domain generalisation)

$$\text{Proposition: } \mathcal{Q}_{mda} = \arg \min_{\mathcal{Q}} \sum_{S_i, S_j \in S_{\text{shift}}} d(\mathcal{Q}(S_i), \mathcal{Q}(S_j))$$

- Domain shift in EEG patterns led to domain discrepancy, so we introduce the **sum-decomposable component** based on [Wagstaff 2019], a summation layer to effectively represent any permutation-invariant function

Our Approach - Domain Shift Controller $D_C(\omega)$

- **Adversarial elements:** We integrate two gradient reversal layers (GRL) [Ganin 2016] before and after a two-layer MLP, followed by an additional layer to further augment its performance
- **Rationale for Adversarial actors:** To represent the **domain discrepancy**, which is the largest difference between two domains to depict their divergence
 - **Pros:** In forward propagation, the GRL act as an identity map and reverses the direction of gradients in backward propagation, and is overall an alternative of 'Discriminator' in GAN.
 - **Cons:** Two GRL layers exhibit instability during training
- We extend MND measure [Wang 2018], as Maximum mean norm discrepancy (M_{MND})

$$M_{\text{MND}}(S_i, S_j) := \max_{g \in \mathcal{Q}} \|\mathbb{E}_{x \in S_i} g(x) - \mathbb{E}_{x \in S_j} g(x)\|_2$$

- Objective function of the $D_C(\omega)$

$$\mathcal{L}_c = \sum_{S_i \in S_{\text{shift}}} \max_{g \in \mathcal{Q}} \min_{\tau \in V_{\text{lspace}}} \|\mathbb{E}_{x \in S_i} g(x) - \tau\|_2$$

Contributions

- We proposed MeLaDA, an approach to develop a subject-agnostic EEG-based emotion recognition model.
- We setup theoretical aspects to mitigate the problem of domain shift, a way to incorporate any type of domain discrepancy by introducing a sum-decomposable network.
- We carried out experiments on the publicly available EEG-based aBCIs dataset, SEED¹. The results indicate that our proposed approach outperforms domain generalisation methods. Moreover, our proposed approach, MeLaDA, exhibits comparable time and storage costs to domain generalisation methods.

¹<https://bcmi.sjtu.edu.cn/home/seed/seed.html>

Model Training Strategy

- We utilise meta-learning approach to ensure the generalisation ability of the domain shift controller.
- Our training approach is of two-stage,
 - Training domain shift controller: Optimise \mathcal{L}_c to minimise domain shift and couple via meta-learning

$$\mathcal{L}_{\text{meta}} = \sum_{(x_i, y_i) \in S_{\text{valid}}} \tanh \left(\ell(x^i, y^i; \theta') - (\ell(x^i, y^i; \theta)) \right)$$

- Overall loss for updating ω

$$\mathcal{L}_C(\theta, \phi, \omega; S_{\text{train}}) + \lambda \mathcal{L}_{\text{meta}}(\theta', \phi, \omega; S_{\text{valid}})$$

- Training the overall network: We utilise model-agnostic meta learning approach [Finn 2017] to train both the domain shift controller and classifier as two distinct tasks alternatively.

Model Training Strategy - Algorithms

Algorithm 1 Training the Domain Shift Controller

Input: Given a domain \mathcal{D} and θ, ϕ, ω are parameters.

Output: ω

- 1: $\mathcal{D} : (S_{\text{train}}, S_{\text{valid}}) \leftarrow \mathcal{D}$ ▷ Random partitioning
- 2: $\mathcal{L}_C(\theta, \omega; S_{\text{train}}) \leftarrow D_C(F(X))$ ▷ Meta-training stage
- 3: $\theta \leftarrow \theta' - \alpha_\theta \mathcal{L}_C(\theta, \omega; S_{\text{train}})$ ▷ Meta-training stage
- 4: $\mathcal{L}_{\text{meta}}(\theta, \theta', \phi; S_{\text{valid}}) \leftarrow$
 $\quad \rightarrow \sum_{(x_i, y_i) \in S_{\text{valid}}} \tanh(\ell(x^i, y^i; \theta') - (\ell(x^i, y^i; \theta)))$ ▷ Meta-validation stage
- 5: Update ω utilising $\mathcal{L}_C + \lambda \mathcal{L}_{\text{meta}}$ ▷ Optimisation

Algorithm 2 Training the MeLaDA framework

Input: Given a domain \mathcal{D} and θ, ϕ, ω are parameters.

Output: θ, ϕ, ω

- 1: $\mathcal{D} : (S_{\text{train}}, S_{\text{valid}}) \leftarrow \mathcal{D}$ ▷ Random partitioning
- 2: $\mathcal{L}_C(\theta, \omega; S_{\text{train}}) \leftarrow D_C(F(X))$ ▷ Meta-training stage
- 3: $\mathcal{L}_{\text{classif}}^{\text{train}}(\theta, \phi) \leftarrow \ell(C(F(X_{\text{train}})), Y_{\text{train}})$ ▷ Meta-training stage
- 4: $\theta \leftarrow \theta' - \alpha_\theta \mathcal{L}_C(\theta, \omega; S_{\text{train}})$ ▷ Meta-training stage
- 5: $\mathcal{L}_{\text{classif}}^{\text{valid}}(\theta', \phi) \leftarrow \ell(C(F(X_{\text{valid}})), Y_{\text{valid}})$
 $\quad \rightarrow$ ▷ Meta-validation stage
- 6: Update θ, ϕ, ω utilising $\lambda \mathcal{L}_C + \mathcal{L}_{\text{classif}}^{\text{valid}} + \mathcal{L}_{\text{classif}}^{\text{train}}$
 $\quad \rightarrow$ ▷ Optimisation

Experiment - Dataset and Feature Extraction

Dataset: We employ SEED dataset for emotion recognition and aBCIs using EEG signals. We use EEG signals data which has stimulation of 15 video clips (or 15 domains/subjects) from Chinese movies. It contains three distinct emotion classes which are happiness, neutrality, and sadness.

- Each subject is repeated 3 times in intervals of one week.
- **Extracted Features:** We use the existing differential entropy features, which corresponds to the logarithmic spectral energy of a fixed-length EEG sequence within a specific frequency band.
- We extracted the spectral energy for EEG patterns variability, where we apply the short-time Fourier transform using a non-overlapping Hanning window of 1 second to the EEG signal, provided five frequency bands.
- Given the input data is time-series, with each sample of dimension 310 (62 channels \times 5 frequency bands), and we resample the feature with a time-step of 15 and a 1-second overlap.
- Following data preprocessing, we have 3184 samples per domain, and the overall data size is $15 \times 3184 = 47,760$ samples

Result

Models	DA		Models	DG	
	MA	SD		MA	SD
SVM [46]	0.567	0.16	-	-	-
TCA [46]	0.640	0.15	MLDG [36]	0.795	0.12
TPT [46]	0.752	0.13	FC [38]	0.806	0.12
DAN [29]	0.838	0.08	DICA [33]	0.7	0.08
DANN [29]	0.792	0.13	DResNet [33]	0.853	0.08
WGAN-DA [31]	0.871	0.07	PnP [34]	0.854	0.07
MeLaDA (Ours)	0.864	0.09	MeLaDA	0.864	0.09

Table 1

The mean accuracy and standard deviation for both domain adaptation (DA) and domain generalisation (DG) are reported with comparative baseline methods on the SEED dataset.

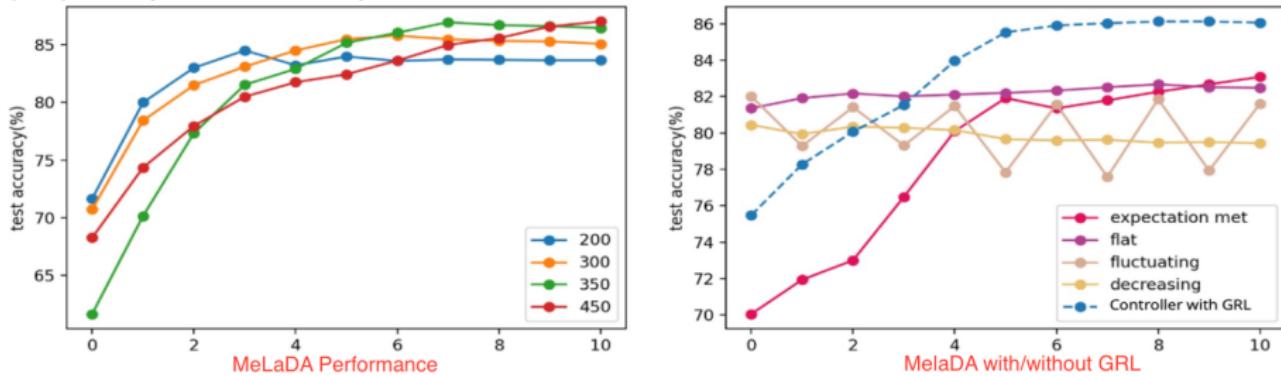


Figure: Fast Adaptation to Domains

Conclusion

- Our work introduces MeLaDA, an augmented domain adaptation approach using meta learning, for subject-agnostic EEG-based emotion recognition.
- MeLaDA allows for subject-agnostic model development without requiring source domain data during testing.
- The approach employs a sum-decomposable domain shift controller for enhanced domain adaptation, which is theoretically proven.
- MeLaDA combines adversarial actors - GRL and meta-learning techniques, facilitating generalisation to new domains with minimal self-adaptive iterations.
- Experimental results on the SEED dataset demonstrate superior performance of MeLaDA compared to traditional domain generalisation methods.
- MeLaDA's suitability for constructing subject-agnostic affective models is highlighted, surpassing conventional domain adaptation, domain generalisation, and ASFM (adaptive subspace feature matching) methods.

References I

- Chelsea Finn, Pieter Abbeel et Sergey Levine.
Model-agnostic meta-learning for fast adaptation of deep networks.
In International conference on machine learning, pages 1126–1135.
PMLR, 2017.
- Yaroslav Ganin et Victor Lempitsky.
Unsupervised domain adaptation by backpropagation.
In International conference on machine learning, pages 1180–1189.
PMLR, 2015.
- Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand et Victor Lempitsky.
Domain-adversarial training of neural networks.
The journal of machine learning research, vol. 17, no. 1, pages 2096–2030, 2016.

References II

- Krikamol Muandet, David Balduzzi et Bernhard Schölkopf.
Domain generalization via invariant feature representation.
In International conference on machine learning, pages 10–18. PMLR, 2013.
- Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner et Michael A Osborne.
On the limitations of representing functions on sets.
In International Conference on Machine Learning, pages 6487–6494. PMLR, 2019.
- Jindong Wang, Wenjie Feng, Yiqiang Chen, Han Yu, Meiyu Huang et Philip S Yu.
Visual domain adaptation with manifold embedded distribution alignment.
In Proceedings of the 26th ACM international conference on Multimedia, pages 402–410, 2018.

References III