Arkworks small field support

Using system-native types for efficient arithmetic

Benjamin Bencik, Andrew Zitek-Estrada
Charles

Motivation

Finite Fields are the foundation of Arkworks

- Optimizations on basic arithmetic accumulate savings at protocol level Set offinite felds

 Ark-ff offers performance and flexibility for arbitrary sized fields

" Status Quo

- Path toward SIMD/ vectorization and performance boost in serial

small fields

(L

S~

Goal |
argeted
optimization | Field arithmetic
* Rewrite arbitrary bit-length arithmetic with native types for moduli < 128 bits l y mplementations

* No breaking changes

OverVieW Of prOjeCt SCOpe 4 and 5 future work

needed by this effort

SIMD Optimizer
4)
neon]
>
[avx]
& J
A A A
Prime specific optimizations
Lo Optimized Field
Mersenne optimization Arithmetic
Implementation
u Goldilocks optimization
4) o
_ Babybear optimization
prime p | SmallFp proc macro montaomer
» decides smallest 9 y >»

. backend
possible type
\ J

Instantiation

Famihar flow for user

Existing
» Supply same config to new macro

derive(MontConfig)]

[modulus = "2147483647"]

[generator = "7"]

pub struct F32Config;

pub type F32 = Fp64<MontBackend<F32Config, 1>>;

. Use the generated type as usual &

Existing macro and new

macro are orthogonal

- Instead of Biglnt, SmallFp macro uses u8, u16, R

[modulus = "2147483647"]
u32, ué4 or u128 generator = "7"]

pub struct SmallField;
pub type SmallF32 = SmallFp<SmallField>;

New

Macro generates the backend functions

Macro implementations

Generate
mul inverse casts by mMacro
add/sub requires overflow through Fermat <€— div sqrt :
: for BigInt<2>
handling theorem
true false
mod ¢ 264
' ' '
' lit into | d high
upcast to higher type Spll "T 02%“'1V ana nig sqrt in ark-ff
compute (@ni - + a) Tonelli-Shanks
a-b mod N (b - 2% + byo)

Default trait implementations (backend agnostic)

Same for

Random Display from

Serialization : .
sampling string

all inputs

Trait implementation is filled in with the backend

BigInt<N>: [u64; N]

uses

Fp<P,N>

Key difference

P: FpConfig<N>

N: usize

A

implements

MontBackend<Config, N>

implements

A

montgomery backend
marco

SmallFp<P>

uses

P: SmallFpConfig
A

implements

small montgomery
backend macro

generic over u8, u16,
u32,u64, ui28

Key difference

Benchmarks...

Addlthn ~ 20-35% improvement for all tested fields

Add/00-F8M7 L

Add/00-SmallF8MontM7

Add/01-F16M13 -

Add/01-SmallF16MontM13 |-

Add/02-F32M31 |-

>
-

Add/02-SmallF32MontM31 |-

Add/03-F32Babybear |~

Add/03-SmallF32MontBabybear |-
Add/04-F64Goldilocks |- ‘

Add/04-SmallF64MontGoldilock

Add/05-F128Generic |+

Add/05-SmallF128Mont -

Average time (ns)

Benchmarks...

Inverse

~ 35-60% improvement for all tested fields

Inv/01-F16M13 |- ‘
Inv/01-SmallF16MontM13 -
Inv/02-F32M31 |- *
Inv/02-SmallF32MontM31 |-
Inv/03-F32Babybear |- *
Inv/03-SmallF32MontBabybear -
Inv/04-F64MontGeneric - *
Inv/04-SmallF64MontGeneric |-

Inv/05-F64Goldilocks |- *

Inv/05-SmallF64MontGoldilock -

0 100 200 300 400 500

Average time (ns)

Benchmarks...

. : o fields that fit into u32 faster 3-5%
Multiplication

Mul/01-F8M7 I— +
Mul’01-SmallF8MontM7 |-
Mul/02-F16Generic |- *—
Mul/02-SmallF16Mont |-
Mul/03-F32M31 |- F
Mul/03-SmallF32MontM31 |-
Mul/04-F32Babybear |- *—
Mul/04-SmallF32MontBabybear |~

Mul/05-F64Goldilocks -

Mul/05-SmallF64MontGoldilock

128-bit multiplication WIP Average time (ns) u64 ~45% improvement

Be m C h m arKS (serial) Drop-in replacement no code changes

Efficient Sumcheck

Sumcheck Runtime: Fp vs SmallFp
Goldilocks vs SmallGoldilocks M31 vs SmallM31 BabyBear vs SmallBabyBear
B Goldilocks e M31 i BabyBear

140001 B SmallGoldilocks I B SmallM31 _ B SmallBabyBear

12000
—~ 10000+t
n
5
o 8000F
£
5 60007

4000

2000t

0 16 18 20 22 24 26 28 30 16 18 20 22 24 26 28 30 16 18 20 22 24 26 28 30
Number of Variables Number of Variables Number of Variables

19% improvement 2% improvement

Integration

PR contains tests and Testnignty)

benches —

732 test smallfp8::tests::f8::test_serialization ... ok
733 test smallfp8::tests::f8::test_sqrt ... ok

° Trai.t in Crate ark_ff ;2: :est smallfp8fftest53ff8fftest_sub_properties ... OK

est smallfp8::tests::f8::test_sum_of_products_tests ... ok
736 test smallfp8::tests::f8 _mont::test_add_properties ... ok
. 737 test smallfp8::tests::f8_mont::test_constants ... ok

° MaCrO In Crate ﬁ'macrOS 738 test smallfp8::tests::f8 _mont::test_fft ... ok

739 test smallfp8::tests::f8 _mont::test_frobenius ... ok
. 740 test smallfp8::tests::f8 _mont::test_mul_by base_field_elem ... ok

¢ Sample flelds added tO Crate teSt-curves 741 test smallfp8::tests::f8 _mont::test_mul_properties ... ok
742 test smallfp8::tests::f8_mont::test_pow ... ok
743 test smallfp8::tests::f8_mont::test_serialization ... ok
744 test smallfp8::tests::f8_mont::test_sqrt ... ok
745 test smallfp8::tests::f8 _mont::test_sub_properties ... ok
746 test smallfp8::tests::f8 _mont::test_sum_of_products_tests ... ok
747 test mnt6_753::tests::fq3::test_sqrt ... ok
748 test secp256kl::tests::gl::test_mul_properties ... ok
749 test mnt4_753::tests::gl::test_mul_properties has been running for
750 test mnt4_753::tests::gl::test_mul_properties ... ok
751
752 test result: ok. 369 passed; 0 failed; © ignored; © measured; 0 fil
753
754 Doc-tests ark_algebra_bench_templates
755
756 running O tests
757
758 test result: ok. © passed; © failed; @ ignored; @ measured; 0 filte
759
760 Doc-tests ark_ec
761
762 running 6 tests
763 test ec/src/lib.rs - (line 155) ... ok

764 test ec/src/lib.rs - (line 103) ... ok

Future Work

1. Prime specific optimizations: Mersenne, Goldilocks, Babybear

Base + Extension field arithmetic!

2. Vectorized operations

Pairwise operation for a,b € F} Scalar operation fora € F,x € N
ai; @ ao an, ay | a2 Qn
O a1 0b; asobs ... |apob, O a1ox |asox a, O
bl b2 b'n, L
Multiscalar operation fora € F',z € N Reduction for a € F),
a1 a9 an
O a1 01 |as oI ... QpOTy, a as ... Qp a;oasoas...an,

[derive(SmallFpConfig)]

Recap Arkworks Sma" Fields ‘modulus = "2147483647"]

[generator = "7"]

pub struct SmallField;
pub type SmallF32 = SmallFp<SmallField>;

SmallFp and its macro are a drop in replacement that implement Field

Requires no new code and contains no breaking changes New

High-level protocols expect up to 30% serial-runtime improvement for moduli < 128 bits

Bonus side-effect 5~

Clear path exists toward vectorization/ SIMD optimizations

GGoal achieved &

