
Stairway to XML
By Robert Sheldon

STAIRWAY TO XML

By ROBERT SHELDON

Published by SimpleTalk Publishing, 2017

First published on SQLServerCentral

Copyright Robert Sheldon 2017

ISBN: 978-1-910035-14-6

The right of Robert Sheldon to be identified as the author of this book has been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.
All rights reserved. No part of this publication may be reproduced, stored or intro-
duced into a retrieval system, or transmitted, in any form, or by any means (electronic,
mechanical, photocopying, recording or otherwise) without the prior written consent of the
publisher. Any person who does any unauthorized act in relation to this publication may be
liable to criminal prosecution and civil claims for damages. This book is sold subject to the
condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise
circulated without the publisher's prior consent in any form other than which it is published
and without a similar condition including this condition being imposed on the subsequent
publisher.

Cover Image: Andy Martin
Typeset: Gower Associates

Table of ContentsTable of Contents
Level 1 – Introduction to XML	 8

Level 2 – The XML Data Type	 17

Level 3 – Working with Typed XML	 24

Level 4 – Querying XML Data	 36

Level 5 – The XML exist() and nodes() Methods	 51

Level 6 – Inserting Data into an XML Instance	 64

Level 7 – Updating Data in an XML Instance	 77

Level 8 – Deleting Data from an XML Instance	 89

Level 9 – Creating XML-based Functions	 99

Level 10 – Converting XML Data	 110

v

About the Author
After being dropped 35 feet from a helicopter and spending the next year recovering (http://
preview.tinyurl.com/zexgcdu), Robert Sheldon left the Colorado Rockies and emergency res-
cue work to pursue safer and less painful interests—thus his entry into the world of technol-
ogy. He is now a technical consultant and the author of numerous books, articles, and training
material related to Microsoft Windows, various relational database management systems, and
business intelligence design and implementation. He has also written news stories, feature
articles, restaurant reviews, legal summaries, and the novels "Last Stand" and "Dancing the
River Lightly." You can find more information at http://www.rhsheldon.com.

Introduction
Although XML is conceptually simple, its use as an equal partner datatype within a relational
database, with full searching, validation and manipulation of data, is not intuitive. Now that
the industry is more conscious of the use of semi-structured data and data defined by docu-
ment markup, it is becoming more important than ever for Database Developers and DBAs
to become conversant with the technology and appreciative of the cases where XML technol-
ogies enhance applications and their development. In this book, originally a series of articles
on SQLServerCentral.com, Robert Sheldon flexes his talent to make the complicated seem
simple.

http://preview.tinyurl.com/zexgcdu
http://preview.tinyurl.com/zexgcdu
http://www.rhsheldon.com

Summary
Level 1 – Introduction to XML
An explanation of what XML is, and the components of an XML document, Elements and
Attributes. The basics of tags, entity references, enclosed text, comments, and declarations.

Level 2 – The XML Data Type
SQL Server's XML Data Type, showing that it is as easy to configure a variable, column,
or parameter with the XML data type as configuring one of these objects with any other
data type.

Level 3 – Working with Typed XML
Enforce the validation of an XML data type, variable or column by associating it with an
XML Schema Collection. SQL Server validates a typed XML value against the rules defined
in the schema collection so that INSERT or UPDATE operations will succeed only if the
value being inserted or updated is valid as per the rules defined in the Schema Collection.

Level 4 – Querying XML Data
Extract a subset of data from an XML instance by using the query() method, and you
can use the value() method to retrieve individual element and attribute values from an
XML instance.

Level 5 – The XML exist() and nodes() Methods
The XML exist() method is used, often in a WHERE clause, to check the existence of
an element within an XML document or fragment. The nodes() method lets you shred an
XML instance and return the information as relational data.

Level 6 – Inserting Data into an XML Instance
The modify method lets you manipulate XML data using XML DML. It can insert, alter or
delete data. How to use the method to insert a node into an XML instance.

6

Level 7 – Updating Data in an XML Instance
Provide the necessary keywords and define the XQuery and value expressions in your
XML DML expression in order to use the modify() method to update element and
attribute values in either typed or untyped XML instances in an XML column.

Level 8 – Deleting Data from an XML Instance
In order to use the modify() method to delete data from typed and untyped XML
instances, you must pass an XML DML expression as an argument to the method. That
expression must include the delete keyword, along with an XQuery expression that
defines the XML component to be deleted.

Level 9 – Creating XML-based Functions
How to use XML methods within user-defined functions to return XML fragments and values
from your target XML instance.

Level 10 – Converting XML Data
How to convert string values to XML and how to convert XML to character types.

7

Level 1 – Introduction to XML
Support for the eXtensible Markup Language (XML) was first introduced in SQL Server with
the release of SQL Server 2000. However, XML-related features were limited to data man-
agement capabilities that focused on mapping relational and XML data. For example, SQL
Server 2000 added the FOR XML clause, which lets you return relational query results
as XML.

However, it wasn't until the release of SQL Server 2005—when the XML data type was
added—that support for XML got interesting. The XML data type lets you natively store
XML documents in columns and variables configured with that type. The data type also
supports a set of methods you can use to retrieve and modify specific components within
the XML document.

To take full advantage of the XML-related features supported in SQL Server, you might
find it useful to have a fundamental understanding of XML itself. To that end, this first
Level of the book explains what XML is and describes the various components that make
up an XML document.

An overview of XML
Similar to the HyperText Markup Language (HTML), XML is a markup language that uses
tags to delineate and describe the nature of the data associated with those tags. What makes
XML extensible is its self-describing nature; that is, you create tags that are specific to the
data values contained in the XML document. In HTML, those tags are pre-defined. (XML's
extensible nature will become clearer as we work through the XML components.)

Despite its extensibility, XML is still a standardized language that must conform to a specific
set of formatting rules, as defined by the World Wide Web Consortium (W3C). Because of
this standardization, the language has been widely adopted in order to transport and store
data, unlike HTML, which is used to display data. XML makes it possible to easily share data
among heterogeneous systems, regardless of hardware, operating system, or application type,
and XML's universal adoption means that data can be processed with little human interven-
tion. At the same time, you can control how the data is described, while also controlling how
the data is ordered and displayed.

8

XML components
The primary components that make up an XML document—and the rules that govern the
use of those components—are generally very straightforward, but you must adhere strictly to
these rules in order for an XML document to be properly processed by the SQL Server
XML parser.

There are primarily two types of information included in an XML document: the data to be
stored and the tags that describe the data. A tag is made up of a set of angle brackets (< >)
that enclose a descriptive word or compound word (no spaces) that describes the data associ-
ated with the tag. It's because of the self-describing nature of these tags that XML is often
considered a metalanguage.

Each discrete piece of stored data is enclosed in an opening tag and a closing tag, as shown in
Listing 1-1.

<Person>John Doe</Person>

Listing 1-1

In this case, the opening tag is <Person>, and the closing tag is </Person>. Notice that
a forward slash precedes the tag description in the end tag. A forward slash must precede
all end tags, but the language of the tag must be the same as the opening tag, which in the
example above is Person. I could have chosen a name other than Person, including a
name that has nothing to do with people, but a good practice is to always provide tag names
that best describe the data enclosed in the opening and closing tags. In this case, the tags are
describing the name of a person, John Doe, thus the tag name <Person>.

Together, the tags and enclosed data represent a single element. However, an element does
not always have to contain data. An empty element can be rendered in one of two ways. The
first is by specifying the opening and closing tags, but including no data, as in Listing 1-2.

<Person></Person>

Listing 1-2

Another way to represent an empty element is to use only one set of brackets, but still include
the forward slash (Listing 1-3).

9

Level 1 – Introduction to XML

<Person />

Listing 1-3

Again, this method can be used only when an element contains no value. As you'll see later
in the book, a schema might require an element for which there is no value. In that case, you
can use the shortened format to represent the both tags of the element.

Whether or not an element contains a value, whenever both tags are used, the opening and
closing tags must match exactly, down to the capitalization (except for the forward slash in
the closing tag). For instance, the element in Listing 1-4 generates an error in the SQL Server
XML parser because the case is different between the two tags.

<person>John Doe</Person>

Listing 1-4

The descriptive word in the opening tag is all lowercase; however, the descriptive word in the
closing tag begins with a capital letter. The opening and closing tags must match to be con-
sidered proper, or well-formed, XML.

You can, however, embed elements within each other. In Listing 1-5, I embed two instances
of the <Person> element within the <People> element.

<People>
<Person>John Doe</Person>
<Person>Jane Doe</Person>
</People>

Listing 1-5

Notice that each <Person> element is complete in itself. It includes the opening and clos-
ing tags and the data they enclose. Elements embedded in other elements are referred to as
child elements or, in some cases, subelements. The outer element, in this case, <People>, is
the parent element. The parent element at the highest Level of an XML document is consid-
ered the root element. All XML documents must have one, and only one, root element. So
the <People> element in the example above is the parent element to the two <Person>
elements, and it is the root element for the XML document.

SQL Server also permits you to store XML fragments in an XML column or variable.

10

Level 1 – Introduction to XML

A fragment is a chunk of XML code without a root element, such as the two elements shown
in Listing 1-6.

<Person>John Doe</Person>
<Place>Seattle, WA</Place>

Listing 1-6

The elements must still be well-formed XML, that is, have matching tags that enclose the
data, but they don't have to be an XML document. As you'll see later in the book, you can
specify that only XML documents be permitted in an XML column or variable but, for now,
just know that SQL Server distinguishes between XML documents and fragments and can
store both.

When you embed elements within other elements, you must ensure that the child elements
are complete before you end the parent element. For instance, in Listing 1-7, I end the
<People> element before the <Person> element, which causes the SQL Server XML
parser to generate an error.

<People><Person>John Doe</People></Person>

Listing 1-7

You must ensure that your child elements are complete no matter how many levels contain
embedded elements. In the following example, the <FirstName> and <LastName>
elements are embedded in each <Person> element, and the <Person> elements are
embedded in the <People> element.

<People>
<Person>
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person>
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>

Listing 1-8

11

Level 1 – Introduction to XML

In this case, the <Person> elements act as both child and parent elements. Notice, however,
that each embedded element, regardless of the level, falls completely within the opening and
closing tags of the parent element. For example, the first instances of the <FirstName>
and <LastName> elements fall completely within the first instance of the <Person>
element, and the two instances of the <Person> elements fall completely within the
<People> element, which is the document's root element.

Elements can also have attributes associated with them. An attribute is a property to
which you can assign a value. The attribute is defined as part of the element's opening tag.
In Listing 1-9, I've added the id attribute to each instance of the <Person> element.

<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>

Listing 1-9

As the example demonstrates, an attribute consists of the attribute name (in this case, id),
followed by an equal sign and the attribute value, enclosed in double quotes. So the id
attribute for the first instance of the <Person> element has a value of 1234, and the
id attribute for the second instance of the <Person> element has a value of 5678.

Another component contained in many XML documents is the declaration, which at a mini-
mum specifies the version of the XML standard that the document conforms to. To date, there
are only two versions: 1.0 and 1.1. If using XML 1.0, the declaration is not necessary; how-
ever, XML 1.1 requires one. For that reason, you should be aware of how to include a decla-
ration in your XML document.

If you include a declaration, you must place it at the beginning of the document, start the
declaration with the <? opening tag, and end it with the ?> closing tag. In addition, you must
include the xml keyword (lowercase) and the version attribute (also lowercase). Another
attribute commonly included, although optional, is encoding, which specifies the character
encoding used for the XML document.

12

Level 1 – Introduction to XML

In Listing 1-10, I include a declaration that specifies version 1.0 and an encoding of UTF-8,
which means the data is stored as a sequence of 8-bit Unicode characters.

<?xml version="1.0" encoding="UTF-8"?>
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>

Listing 1-10

You can also add comments to your XML documents. To do so, simply precede the comment
with the <!-- tag and end it with the --> tag, as I've done in Listing 1-11.

<?xml version="1.0" encoding="UTF-8"?>
<!-- A list of current clients -->
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>

Listing 1-11

As you can see, I've added the comment, A list of current clients, which I've
enclosed in the comment tags. The SQL Server XML parser will ignore anything within the
tags, so you can use the commenting feature not only to provide information about the XML
document and its data, but also to preserve parts of the XML code that you want to hang on
to but you don't want to have processed as part of the document.

13

Level 1 – Introduction to XML

Another consideration when working with XML is that certain characters cannot be parsed
when they appear in element values. For example, you cannot include an ampersand (&) in
an element's value, as I've done in the <FavoriteBook> child element in Listing 1-12.

<?xml version="1.0" encoding="UTF-8"?>
<!-- A list of current clients -->
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
<FavoriteBook>Crime & Punishment</FavoriteBook>
</Person>
</People>

Listing 1-12

If I try to assign this XML document to an XML column or variable, the <FavoriteBook>
child element will cause the parser to generate an error because the value Crime & Pun-
ishment includes the ampersand. You must replace this type of character with an entity
reference that tells the parser to preserve the character as it is originally intended. An entity
reference begins with an ampersand and ends with a semicolon and in between includes a
multi-character code that represents the original value. For an ampersand, the entity reference
should be &, which I use in Listing 1-13.

<?xml version="1.0" encoding="UTF-8"?>
<!-- A list of current clients -->
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
<FavoriteBook>Crime & Punishment</FavoriteBook>

14

Level 1 – Introduction to XML

</Person>
</People>

Listing 1-13

Notice that I've replaced the ampersand with the & entity reference. Now the XML
parser will handle the <FavoriteBook> element with no problem. But note that the
ampersand is not the only character that will generate an error. The XML standard
identifies five characters that should be replaced with entity references, as I've done
in Listing 1-13.

•	 Less than (<): replace with <
•	 Greater than (>): replace with >
•	 Ampersand (&): replace with &
•	 Apostrophe ('): replace with &apos
•	 Quotation mark ("): replace with "

Another issue that the example raises is the fact that the child elements do not have to be
the same from one parent instance to the next. As you can see, the first instance of the
<Person> element contains only the <FirstName> and <LastName> child elements,
but the second instance of the <Person> element contains the <FirstName>
and <LastName> child elements, as well as the <FavoriteBook> element. As long
as your child elements are well formed, you can include whatever elements necessary to
delineate and define your data.

Conclusion
In this chapter, we've looked at the primary components that make up an XML document.
Elements serve as the basic building blocks for all XML documents, with each element be-
ing delineated by an opening tag and a closing tag and the data value itself being enclosed
between those two tags. Elements can be embedded within each other, but one element—the
root—must act as the parent to all other elements in an XML document. An element can also
include attributes, which are defined as part of an element's opening tag.

15

Level 1 – Introduction to XML

As handy as it might be to know how to put together an XML document, the purpose of this
Level has not been to train you in how to create these types of documents, but rather to pro-
vide an introduction to XML so you can more effectively work with XML in SQL Server.
In the next Level, we'll look at how the XML data type is implemented in SQL Server and
how it can be assigned to columns and variables in order to store both XML documents and
XML fragments.

16

Level 1 – Introduction to XML

Level 2 – The XML Data Type
At the heart of SQL Server's support for XML lies the XML data type, which lets you store
XML data in database objects such as variables, columns, and parameters. When you con-
figure one of these objects with the XML data type, you simply specify the type name as you
would any other SQL Server type. What sets the XML data type apart from the other types are
a number of features that affect the way you can store, query, modify, and index XML data—
all concepts we'll be covering as we progress through this book.

The XML data type ensures that your XML data is well formed, that is, conforms to ISO stan-
dards. You can use the data type to store either XML documents or fragments. As you'll recall
from Level 1, an XML document is one that has a single top-level, or root, element. Without
a single root element, the XML is considered a fragment.

Before you define an object with the XML data type, you should be aware that it has several
limitations, including the following:

•	 An instance of an XML column cannot exceed 2 GB.
•	 An XML column cannot be an index key.
•	 You cannot use an XML object in a GROUP BY clause.
•	 You cannot compare or sort data that uses the XML type.

Even if you can work within these limitations, there are times when using the XML data type
isn't necessary. For example, if you're simply storing your XML documents in their entirety
and don't plan to query or modify individual XML components, you should consider using
large object storage instead, such as VARCHAR(MAX). That way, you're not invoking the
XML parser, which helps to minimize the overhead necessary to store your XML documents.
However, if you want to take advantage of the capabilities specific to the XML data type, then
by all means, use it when defining your variables, columns, and parameters.

Defining an XML variable
As mentioned above, to define a database object with the XML data type, you specify the type
as you would any other SQL Server type. In the case of variables, simply provide the variable
name, followed by the XML type, as shown in the Transact-SQL code in Listing 2-1.

17

DECLARE @ClientList XML
SET @ClientList =
'<?xml version="1.0" encoding="UTF-8"?>
<!-- A list of current clients -->
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>'
SELECT @ClientList
GO

Listing 2-1

The example begins by using a DECLARE statement to define the @ClientList
variable. When I declare the variable, I simply include the XML data type name after
the variable name.

I then use the SET statement to set the value of the variable to equal a small but well-formed
XML document. The first line of the document is the declaration, which specifies the XML
version and encoding. The next line is a comment about the nature of the content in the XML
document. The SQL Server XML parser essentially ignores any commented information. The
rest of the document is the actual XML, which contains the root element <People> and two
instances of the <Person> child element.

Note
The components that make up an XML document are described in Level 1 of the book. If
you're not familiar with these XML components and have not yet reviewed the first Level,
you might benefit from reading that one first, before continuing with this Level.

After I set the variable's value, I use a SELECT statement to retrieve the value. As you would
expect, the statement returns the XML document, as shown in the results in Listing 2-2.

18

Level 2 – The XML Data Type

<!-- A list of current clients -->
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>

Listing 2-2

That's all there is to defining an XML variable. Now let's look at how to define an
XML column.

Defining an XML column
There are no real magic tricks when it comes to creating a database object configured with
the XML data type. If you can define an XML variable, you can just as easily define an XML
column. In Listing 2-3, I create the StoreClients table, which stores an ID and list of cli-
ent information for each company store:

USE AdventureWorks2008R2
GO
IF OBJECT_ID('dbo.StoreClients') IS NOT NULL
DROP TABLE dbo.StoreClients
GO
CREATE TABLE dbo.StoreClients
(
StoreID INT IDENTITY PRIMARY KEY,
ClientInfo XML NOT NULL
)
GO

Listing 2-3

19

Level 2 – The XML Data Type

The ID, of course, is stored in the StoreID column, which is configured with the INT data
type. The client information is stored in an XML column, in this case, ClientInfo. Be-
cause I use an XML column, I can take advantage of the extensible nature of XML and store
client-related data that does not conform easily to a relational model, while still associating
that data with a specific store, as identified in the StoreID column.

When I define the ClientInfo column, I simply specify the XML data type as I would any
other type. In fact, at its most basic level, the column is treated just like any other column. As
a result, I can include an XML column in a table along with other column types. Each XML
document or fragment stored in the XML column is treated as an individual value, just like the
values in any other columns, thus preserving the table's atomic nature. That way, I can build a
table with any assortment of columns yet include one or more XML columns.

After I create the StoreClients table, I can insert data into the table, including XML
documents and fragments. In Listing 2-4, I declare an XML variable and use that variable in
an INSERT statement that adds a row of data into the table.

DECLARE @ClientList XML
SET @ClientList =
'<?xml version="1.0" encoding="UTF-8"?>
<!-- A list of current clients -->
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>'
INSERT INTO dbo.StoreClients (ClientInfo)
VALUES(@ClientList)
GO

Listing 2-4

In this case, the INSERT statement adds the XML data to the table's ClientInfo column.
Although the @ClientList variable holds an entire XML document, the INSERT state-
ment treats the document as a single value when adding that document to the ClientInfo
column. (The value in the StoreID column is generated automatically because it's an
IDENTITY column.)

20

Level 2 – The XML Data Type

If you were to query the table after running the INSERT statement, you would receive the
StoreID value (a 1 if this was the first row inserted into the table) and the full XML docu-
ment from the ClientInfo column.

As you can see, creating an XML column and inserting data into that column is a fairly
straightforward process. There are, of course, ways to make this process far more compli-
cated, which you'll learn how to do as we work through the book. Until then, know that, at its
most basic, working with the XML data type is for the most a painless endeavor. So let's look
at how to create an XML parameter.

Defining an XML parameter
When creating a stored procedure in SQL Server, you might want to pass data into the proce-
dure when you call it or have the procedure return data after it executes. You can do this by
including parameters in your procedure definition. Not surprisingly, you can configure those
parameters with the XML data type, as you can variables and columns.

For example, in the CREATE PROCEDURE statement in Listing 2-5, I define the
@StoreClients input parameter, which is configured with the XML data type.

USE AdventureWorks2008R2
GO
IF OBJECT_ID('dbo.AddClientInfo', 'P') IS NOT NULL
DROP PROCEDURE dbo.AddClientInfo
GO
CREATE PROCEDURE dbo.AddClientInfo
@StoreClients XML
AS
INSERT INTO dbo.StoreClients (ClientInfo)
VALUES(@StoreClients)
GO

Listing 2-5

As you can see, my parameter definition follows the CREATE PROCEDURE clause. I specify
that the parameter be defined with the XML data type by including the data type name after
the parameter name, just like I do for columns and variables. Notice that the INSERT state-
ment contained within the procedure definition uses the parameter in its VALUES clause.

21

Level 2 – The XML Data Type

That means, when you run the AddClientInfo stored procedure, you must specify a
value for the @StoreClients input parameter, and that value must be an XML document
or fragment so it can be inserted into the ClientInfo column.

For instance, in Listing 2-6, I declare the @ClientList variable, assign an XML document
to the variable, and then use the variable to provide a value to the @StoreClients input
parameter when I call the AddClientInfo stored procedure.

DECLARE @ClientList XML
SET @ClientList =
'<?xml version="1.0" encoding="UTF-8"?>
<!-- A list of current clients -->
<People>
<Person id="1234">
<FirstName>John</FirstName>
<LastName>Doe</LastName>
</Person>
<Person id="5678">
<FirstName>Jane</FirstName>
<LastName>Doe</LastName>
</Person>
</People>'
EXEC dbo.AddClientInfo @ClientList

Listing 2-6

As in the previous examples, the @ClientList variable is defined with the XML data type
and set to equal the <People> XML document. Because the @StoreClients parameter
is also configured with the XML data type, I can pass in the @ClientList value into the
parameter. As a result, when I run the stored procedure, the XML document is added to the
StoreClients table. If I were to then query the table, I would find that a second row has
been added, with a StoreID value of 2 and a ClientInfo value equal to the XML docu-
ment I passed into the @ClientList variable.

22

Level 2 – The XML Data Type

Conclusion
As you've seen in this Level, configuring a variable, column, or parameter with the XML data
type is as easy as configuring one of these objects with any other type. However, as you work
through subsequent Levels in the book, you'll find that there are additional options available
to you when defining an XML object. For instance, you can associate a schema with an XML
object to ensure that your XML documents and fragments conform to a more-rigidly defined
format. In fact, you'll learn how to do just that in the next Level. So stand by. More fun is
coming your way.

23

Level 2 – The XML Data Type

Level 3 – Working with Typed XML
In Level 2, you were introduced to the XML data type and shown how to use it to create
columns, variables, and parameters that can store XML data. As you saw, you simply specify
the XML data type when you define the object, as you would any other type. However, the
examples in that Level told only part of the story. SQL Server actually supports two kinds of
XML objects: typed and untyped.

What distinguishes the two is whether the XML column, variable, or parameter is associated
with a specific schema collection, a database entity (like a table or stored procedure) that
specifies the structure and data types that an XML document must adhere to. If a database
object is associated with a collection, it is considered typed, otherwise it is untyped. The XML
columns, variables, and parameters defined in the Level 2 examples are all untyped XML ob-
jects because no schema collections are associated with them. In this level, you'll learn how
to work with schema collections and how to create typed database objects.

The XML schema collection
An XML schema collection is made up of one or more XML Schema Definition (XSD)
schemas that are used to validate XML data stored in a typed XML object. The XSD schemas
contain the actual formatting information that defines the structure and data types an XML
instance must use when saved to a typed XML object. As a result, before you can associate
an XML schema collection with an XML object, the collection must exist as an entity within
the database. In other words, you must specifically create the collection before you can
reference it.

To create a schema collection, you use the CREATE XML SCHEMA COLLECTION statement
to specify a collection name and define at least one XSD schema. In the T-SQL code shown
in Listing 3-1, I create the ClientDB database and then add the ClientInfoCollec-
tion XML schema collection to the database. The collection includes a single XSD schema
(enclosed in single quotes after the AS keyword).

24

USE master
GO

IF DB_ID('ClientDB') IS NOT NULL
DROP DATABASE ClientDB
GO

CREATE DATABASE ClientDB
GO

USE ClientDB
GO

CREATE XML SCHEMA COLLECTION ClientInfoCollection AS
'<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:ClientInfoNamespace"
targetNamespace="urn:ClientInfoNamespace"
elementFormDefault="qualified">
 <xsd:element name="People">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FirstName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="LastName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="FavoriteBook" type="xsd:string"
minOccurs="0" maxOccurs="5" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>'
GO

Listing 3-1:	 Creating an XML schema collection in the ClientDB database.

25

Level 3 – Working with Typed XML

Before I try to explain what's going on here, let me qualify my remarks. The rules governing
XSD schemas are quite complex. I can provide an overview of what I've done here, but a full
explanation of the XSD syntax is beyond the scope of this Level—or even this book. Howev-
er, you can find detailed information about the various schema elements at www.w3schools.
com/xml/schema_intro.asp or, preferably, read Jacob Sebastian's book, "The Art of XSD."

In the meantime, let's look at the CREATE XML SCHEMA COLLECTION statement
in more detail. As you can see in Listing 3-1, I provide a name for the collection
(ClientInfoCollection) after the COLLECTION keyword.

I follow the name with the AS keyword and an XSD schema definition, enclosed in single
quotes. The definition begins with the <xsd:schema> element, which provides the details
necessary to establish this code as an XSD schema. In this case, I've included four attributes
in the <xsd:schema> element, which are defined in Table 3-1.

Attribute Description

xmlns (first

instance)

Specifies the source namespace (http://www.w3.org/2001/

XMLSchema) for the elements and data types used in the schema.

The :xsd that follows the xmlns attribute name is an alias used

throughout the schema to reference the source namespace.

xmlns (second

instance)

Specifies the schema's default namespace

(urn:ClientInfoNamespace). This is the namespace that XML

instances must reference when stored in a typed XML object. The

urn: that precedes the actual namespace name refers to Uniform

Resource Name and is used to denote this as a location-independent

resource identifier, as opposed to a Uniform Resource Locator (URL),

such as the one specified in the first instance of the xmlns attribute.

26

Level 3 – Working with Typed XML

http://www.w3schools.com/xml/schema_intro.asp
http://www.w3schools.com/xml/schema_intro.asp
https://www.red-gate.com/library/the-art-of-xsd
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

targetName

space

Specifies the namespace (urn:ClientInfoNamespace)

associated with the elements defined in the schema. This namespace

corresponds to the one specified in the second instance of the xmlns

attribute.

element-

FormDefault

Specifies that all elements in the XML instance associated with the

schema must be qualified with the default namespace, either explicitly

or implicitly.

Table 3-1:	 The attributes defined in the <xsd:schema> element.

After I specify the opening <xsd:schema> tag, I define the actual structure that will
be applied to the XML instances stored in the typed XML objects. I begin by using an
<xsd:element> element to define the XML document root, which is called People,
as determined by the name attribute. Notice that both the <xsd:schema> element and
the <xsd:element> element are preceded by the xsd: alias, which refers to the first
namespace defined in <xsd:schema>. All element definitions in the schema must include
the xsd: preface.

Much of the remaining XSD structure is devoted to delineating the child elements and at-
tributes that make up the root element. In fact, you can find the root's closing tag, </
xsd:element>, on the second-to-last line of the XSD definition. Everything between and
including the opening and closing tags defines the structure that each XML instance in an
XML object must conform to.

The next element in the XSD schema is <xsd:complexType>, which indicates
that the current element can contain other elements or attributes. When you include the
<xsd:complexType> element in an element that will include child elements, you must
also include an indicator element that determines the order of the child elements and, in some
cases, the number of those elements. In this situation, I'm using the <xsd:sequence>
indicator element to specify that child elements must appear in a specific order. Although
order isn't a factor in this particularly situation, the <xsd:sequence> indicator is the most
appropriate option of the available indicators.

27

Level 3 – Working with Typed XML

After the <xsd:sequence> element, I add a child element named Person, as indicated
by the name attribute. Notice that the element also includes the minOccurs attribute,
which indicates that the XML instance must include at least one <Person> element, and the
maxOccurs attribute, which has a value of unbounded, indicating that there is no limit
to the number of <Person> elements that the XML instance can contain.

Because the <Person> element can itself include child elements, it, too, is followed by the
<xsd:complexType> element and the <xsd:sequence> indicator element. The first
of the child elements is called FirstName. The type attribute, which indicates the data type
of the element value, is set to xsd:string. The minOccurs attribute indicates that at
least one instance of the element is required, and the maxOccurs attribute indicates that no
more than one instance of the element is permitted.

The second of the child elements is named LastName, and it is configured like the
<FirstName> element. Note, however, that because the <xsd:sequence> element is
included, the XML instance must specify these elements in their defined order.

The last of the <Person> child elements is the one named FavoriteBook. Notice that
this element requires no minimum instances but limits the number of maximum instances
to five.

There's one more item in the <Person> element worth noting—an attribute named id.
The attribute is defined with the xsd:int data type and is required with each <Person>
element in the XML instance, as indicated by the use attribute, which is set to required.

That about covers this schema. As you can see, it's structured like an XML document, with
<xsd:schema> as the root element. Again, I've provided only a high-Level overview of
what makes up an XSD schema. And the example I've used is a very simply one. If you
want to see more complex schemas, check out the AdventureWorks sample database.
It includes several examples. Now let's look at what you can do with a schema.

Typed XML
Once you've added your schema collection to the database, you can create typed XML col-
umns, variables, and parameters. (You can also breathe a sigh of relief, knowing that the
hardest part is behind you.)

28

Level 3 – Working with Typed XML

When defining a typed XML object, you specify the XML data type as you do for untyped
objects, but you also add the name of the schema collection, enclosed in parentheses. For
example, in Listing 3-2, I declare the @xml variable, assign the XML data type to the variable,
and specify the ClientInfoCollection schema collection (created in Listing 3-1).

DECLARE @xml XML(ClientInfoCollection)
SET @xml =
 '<?xml version="1.0" encoding="UTF-8"?>
 <!-- A list of current clients -->
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
 </People>'
SELECT @xml

Listing 3-2:	 Defining a typed XML variable based on the ClientInfoCollection
schema collection.

As you can see, to create a typed XML object, you need only add the schema collection name.
Where things can get tricky is when you insert data into that object. Once you've typed an
XML object, your XML instance must conform to the format defined by the XSD schema
included in the specified collection. In addition, you must ensure that your XML instance
references the default namespace specified in the schema.
If you refer back to Listing 3-2, you'll see that I include the xmlns attribute in the <Peo-
ple> element, the XML document's root element. The xmlns attribute refers specifically to
the default namespace defined in the XSD schema. Now any elements I include in my XML
instance will apply to that namespace.

Because I've created a typed variable, I must also ensure that my XML document conforms
to the format defined in the XSD schema. That means, for example, my <People> element
must contain at least one instance of the <Person> child element, and each instance of the
<Person> element must contain one instance of the <FirstName> element, one instance
of the <LastName> element, and zero to five instances of the <FavoriteBook> element.
In addition, each <Person> element must include an id attribute.

29

Level 3 – Working with Typed XML

When I executed the statements in Listing 3-2, I was able to successfully assign my XML in-
stance to the @xml variable, which means that the XML instance had been properly format-
ted, as evidenced by the value returned by the SELECT statement (shown in Listing 3-3).

<!-- A list of current clients -->
<People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
</People>

Listing 3-3:	 The XML instance stored in the @xml variable.
As you would expect, the XML instance is returned in its entirety, including the xmlns
attribute and its reference to the XSD default namespace.

A typed XML object ensures that your XML instance is correctly formatted. If it's not, SQL
Server will return an error. For example, the code shown in Listing 3-4 declares a typed XML
variable, but this time tries to assign an improperly formatted XML document to the variable.
DECLARE @xml XML(ClientInfoCollection)
SET @xml =
 '<?xml version="1.0" encoding="UTF-8"?>
 <!-- A list of current clients -->
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <MiddleInit>T</MiddleInit>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
 </People>'

Listing 3-4:	 Assigning an improperly formatted XML instance to a typed XML variable.

30

Level 3 – Working with Typed XML

In this case, the first instance of the <Person> element includes the <MiddleInit> child
element, which is not specified in the XSD schema. As a result, when I try to run the SET
statement, SQL Server returns the error shown in Listing 3-5.

Msg 6965, Level 16, State 1, Line 2
XML Validation: Invalid content.
Expected element(s): '{urn:ClientInfoNamespace}LastName'.
Found:element '{urn:ClientInfoNamespace}MiddleInit' instead.
Location: /*:People[1]/*:Person[1]/*:MiddleInit[1].

Listing 3-5:	 Error returned as a result of an improper element.

As the error indicates, the XML parser expected the <LastName> element to follow the
<FirstName> element, but instead found <MiddleInit>, which of course doesn't
belong there.

But non-defined elements are not the only problem. Because the XSD schema defines the
<Person> element as a complex type and qualifies the type with the <xsd:sequence>
element, introducing the child elements in the wrong order also causes the parser to generate
an error. For example, in Listing 3-6, I switch the <FirstName> and <LastName>
elements in the first instance of the <Person> element.

DECLARE @xml XML(ClientInfoCollection)
SET @xml =
'<?xml version="1.0" encoding="UTF-8"?>
 <!-- A list of current clients -->
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <LastName>Doe</LastName>
 <FirstName>John</FirstName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
 </People>'
SELECT @xml

Listing 3-6:	 Listing elements in the wrong order in an XML instance.

31

Level 3 – Working with Typed XML

Again, the XML parser chokes when it doesn't get what it expects. When the order is
changed, SQL Server returns the error shown in Listing 3-7. The XML parser expects the
<FirstName> element but instead gets the <LastName> element, so an error is returned.

Msg 6965, Level 16, State 1, Line 2
XML Validation: Invalid content.
Expected element(s):'{urn:ClientInfoNamespace}FirstName'.
Found: element '{urn:ClientInfoNamespace}LastName' instead.
Location: /*:People[1]/*:Person[1]/*:LastName[1].

Listing 3-7:	 Error returned as a result of specifying elements in an incorrect order.

Although storing data as typed XML might seem like more trouble than it's worth, it does
in fact help to optimize queries, data storage, and data modification. So if you have an XSD
schema available, it's worth adding it to a collection and implementing typed XML objects.

XML documents and fragments
There's one other aspect of working with typed XML that's worth mentioning. SQL Server
distinguishes between XML documents and XML fragments. A document is an XML
instance that has one root element, as you saw in the examples above. An XML fragment
does not have this restriction. The XML must still be well formed, but it can have multiple
root elements.

By default, SQL Server lets you store both documents and fragments in an XML object. How-
ever, if the object is typed, you can specify that it store only documents.

The XML data type provides two options that let you define how to store fragments and docu-
ments. When you specify the name of the schema collection, you can also specify either the
CONTENT or DOCUMENT option. CONTENT is the default, and therefore permits either frag-
ments or documents. If you want, you can include CONTENT when defining your XML object.
For example, in Listing 3-8, I added the CONTENT keyword when declaring my variable.

DECLARE @xml XML(CONTENT ClientInfoCollection)
SET @xml =
 '<?xml version="1.0" encoding="UTF-8"?>
 <!-- A list of current clients -->
 <People xmlns="urn:ClientInfoNamespace">

32

Level 3 – Working with Typed XML

 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
 </People>'
SELECT @xml

Listing 3-8:	 Accepting XML documents or fragments in an XML object.

Notice that the addition of the CONTENT keyword is the only thing that changed. The XML
instance will be saved to the variable as in previous examples, and the SELECT statement
will return the full XML instance, as expected. In this case, that XML is considered a docu-
ment because it has only one root element. However, I could just as easily have saved a well-
formed fragment to the variable.

If I want to limit my XML instances to documents only, I can instead specify the DOCUMENT
option, as shown in Listing 3-9.

DECLARE @xml XML(DOCUMENT ClientInfoCollection)
SET @xml =
 '<?xml version="1.0" encoding="UTF-8"?>
 <!-- A list of current clients -->
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
 </People>'
SELECT @xml

Listing 3-9:	 Limiting an XML object to XML documents.

33

Level 3 – Working with Typed XML

Again, making this change presents no problems because the XML instance is a well-formed
document. But suppose I try to pass in an XML fragment when I specify the DOCUMENT op-
tion, as I do in Listing 3-10.

DECLARE @xml XML(DOCUMENT ClientInfoCollection)
SET @xml =
 '<?xml version="1.0" encoding="UTF-8"?>
 <!-- A list of current clients -->
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
 </People>'
SELECT @xml

Listing 3-10:	 Passing an XML fragment into an XML object configured for documents.

Notice that my XML instance is now a fragment that includes two instances of the <Peo-
ple> element at the root. Not surprisingly, the XML parser doesn't like such behavior. When
I run the SET statement, SQL Server returns the error shown in Listing 3-11.

Msg 6901, Level 16, State 1, Line 2
XML Validation: XML instance must be a document.

Listing 3-11:	 Error generated by SQL Server as a result of the XML fragment.

Of course, this is easily fixed by changing the DOCUMENT option to CONTENT, as I do in
Listing 3-12. I still pass in an XML fragment, but now the XML parser happily accepts it.

34

Level 3 – Working with Typed XML

DECLARE @xml XML(CONTENT ClientInfoCollection)
SET @xml =
 '<?xml version="1.0" encoding="UTF-8"?>
 <!-- A list of current clients -->
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBook>Crime & Punishment</FavoriteBook>
 </Person>
 </People>'
SELECT @xml

Listing 3-12:	 Passing an XML fragment into an XML object configured for fragments
or documents.

As expected, the SELECT statement returns the XML fragment in its entirety. I could just
as easily have added more instances of the <People> element and the XML parser would
have accepted it, as long as the fragment was still well formed and adhered to the formatting
structure defined in the XSD schema.

Conclusion
Working with typed XML objects—and their associated schema collections—gets to be a bit
more complicated than working with simple untyped XML objects. If you plan to save data
as typed XML, you should have a basic understanding of how to implement and work with
XSD schemas. However, creating the XML objects themselves is still a very basic process,
whether those objects are typed or untyped. In the next Level, you'll learn how to incorporate
XML objects in other database entities, such as views, functions, and computed columns. Un-
til then, you might want to dig deeper into XSD schemas. There's a lot to learn there, and the
better you understand them, the more effectively you'll be able to store typed XML.

35

Level 3 – Working with Typed XML

Level 4 – Querying XML Data
In Levels 2 and 3, you learned how to use the XML data type when defining columns, vari-
ables, and parameters. You also learned the difference between typed and untyped XML ob-
jects and how you can associate typed objects with an XML schema collection. As you have
seen, the XML data type makes it relatively easy to store XML documents and fragments.

However, in those Levels, we merely scratched the surface when it comes to
understanding the full power of the XML data type. It turns out that the type supports five
methods—query(), value(), exist(), nodes(), and modify()—that let you
query and manipulate the elements and attributes within the instances stored in the XML
objects. In this Level, we'll cover the two most common methods used to query XML data:
query() and value(). In the Levels that follow, we'll cover the others.

Each XML method requires, at a minimum, one argument that is an XQuery expression.
XQuery is a powerful scripting language used to access XML data. The language contains
the functions, operators, variables, values, and other elements necessary to create complex
expressions. SQL Server supports a subset of the XQuery language that you use to create the
expressions you pass into the XML methods. With these expressions, you can identify very
specifically the components in the XML instances you want to retrieve or modify.

Note
Because XQuery is such a complex language, we can touch upon only some of its compo-
nents in this Level. For a more thorough understanding of XQuery and how it's imple-
mented in SQL Server, see the MSDN XQuery language reference.

Now let's get started with the query() and value() methods. In this Level, we look at a
number of examples that use them to access XML data. The examples are based on a data-
base and table I created on a local instance of SQL Server 2008 R2. The Transact-SQL in
Listing 4-1 creates the test environment necessary to run these examples. The environment
includes the ClientDB database, the ClientInfoCollection XML schema collec-
tion, and the ClientInfo table.

USE master;
GO

IF DB_ID('ClientDB') IS NOT NULL

36

http://msdn.microsoft.com/en-us/library/ms189075.aspx

DROP DATABASE ClientDB;
GO

CREATE DATABASE ClientDB;
GO

USE ClientDB;
GO

IF OBJECT_ID('ClientInfoCollection') IS NOT NULL
DROP XML SCHEMA COLLECTION ClientInfoCollection;
GO

CREATE XML SCHEMA COLLECTION ClientInfoCollection AS
'<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:ClientInfoNamespace"
targetNamespace="urn:ClientInfoNamespace"
elementFormDefault="qualified">
 <xsd:element name="People">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FirstName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="LastName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="FavoriteBook" type="xsd:string"
minOccurs="0" maxOccurs="5" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>';
GO

IF OBJECT_ID('ClientInfo') IS NOT NULL
DROP TABLE ClientInfo;

37

Level 4 – Querying XML Data

GO

CREATE TABLE ClientInfo
(
 ClientID INT PRIMARY KEY IDENTITY,
 Info_untyped XML,
 Info_typed XML(ClientInfoCollection)
);

INSERT INTO ClientInfo (Info_untyped, Info_typed)
VALUES
(
 '<?xml version="1.0" encoding="UTF-8"?>
 <People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>',
 '<?xml version="1.0" encoding="UTF-8"?>
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>'
);

Listing 4-1:	 Setting up the test environment for the examples in this Level.

38

Level 4 – Querying XML Data

As Listing 4-1 shows, the ClientInfo table includes a typed XML column (Info_
typed) and an untyped XML column (Info_untyped). The typed column is associated
with the ClientInfoCollection XML schema collection, which includes only one
XSD schema. The schema's namespace is urn:ClientInfoNamespace. For details
about working with XML schema collections and typed database objects, refer back to
Level 2.

The XML query() method
Perhaps the simplest of the XML methods to understand and use is the query() method.
The method is most often used to return an instance of untyped XML that is a subset of the
targeted XML data. To use the method, you specify the XML database object, the method
itself, and the XQuery expression enclosed in parentheses and single quotes, as shown in the
following syntax:

db_object.query('xquery_exp')

When calling the query() method, you replace the db_object placeholder with the
name of the actual database object and replace the xquery_exp placeholder with the
XQuery expression.

Let's look at an example that demonstrates how this works. In the SELECT statement shown
in Listing 4-2, I use the query() method to retrieve data from the Info_untyped col-
umn. I first specify the column name, a period, and the method name. Then, enclosed in
parentheses and single quotes, I add the XQuery expression ('/People').

SELECT Info_untyped.query('/People')
 AS People_untyped
FROM ClientInfo;

Listing 4-2:	 Using the query() method to return the <People> element.

In this case, the XQuery expression is as about simple as it can get. I am essentially telling
the query() method to return the <People> element and all its contents (the child ele-
ments, attributes, and their values). To do so, as you can see, I needed only to specify the
word People, preceded by a forward slash. Listing 4-3 shows the results returned by the
SELECT statement.

39

Level 4 – Querying XML Data

<People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
</People>

Listing 4-3:	 The results returned by the /People XQuery expression.

If I want to instead retrieve the <People> element from the typed column, I need to modify
XQuery expression to include a reference to the namespace specified in the XSD schema
defined in the XML schema collection. Listing 4-4 shows how I modified the statement to
retrieve data from the typed XML column.

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People') AS People_typed
FROM ClientInfo;

Listing 4-4:	 Using the query() method on a typed XML column.

Notice that the query expression is broken into two sections, separated with a semicolon. The
first section declares the namespace. It begins with the declare namespace keywords,
followed by a namespace alias, in this case ns. The alias is followed with an equal sign and
then the namespace itself (urn:ClientInfoNamespace), enclosed in double quotes.

The second section of the XQuery expression is similar to the expression used for an un-
typed column, except that the element name is first preceded by the namespace alias and a
colon (ns:). For typed columns, your element names must be fully qualified, that is, they
must reflect the schema they're associated with, and that is done by specifying the associ-
ated namespace. However, instead of typing the entire namespace for each element, you can
instead use an alias, which is what I've done.

When you run the SELECT statement, it returns the results shown in Listing 4-5.

40

Level 4 – Querying XML Data

<People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
</People>

Listing 4-5:	 The results returned by an XQuery expression used for a typed column.

As you can see, the results returned from the typed column are nearly identical to those
returned by the untyped column, except that now the results include a reference to the
namespace.

You may have noticed that the last two examples return what is essentially the entire XML
instance saved to the each column. Although the examples are useful for demonstrating how
the query() method works, using the method to return the entire instance is not very useful
because you can do that without using the method at all.

The key, of course, is to refine the XQuery expression to return more specific data.

Suppose, for example, instead of retrieving the entire XML document, we want to return each
instance of the <Person> element, along with its child elements and attributes. For the un-
typed column, we would need to modify our XQuery expression by adding /Person to our
path name so that our expression reads /People/Person, as shown in Listing 4-6.

SELECT
 Info_untyped.query(
 '/People/Person') AS People_untyped,
 Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person') AS People_typed
FROM ClientInfo;

Listing 4-6:	 Retrieving the <Person> elements from the XML instance.

41

Level 4 – Querying XML Data

What I've done here is to further qualify the path name within the expression by adding the
second element. Now only the <Person> elements are returned and not the <People>
element. Listing 4-7 shows the results returned for the untyped column. Notice that only the
two instances of the <Person> element have been returned.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
</Person>
<Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
</Person>

Listing 4-7:	 The <Person> elements returned from the untyped column.

If you refer back to Listing 4-6, you'll see that for the typed column, the expression includes
the ns: alias prefix before each element within the path name. Listing 4-8 shows the results
returned for that column. This time, the namespace reference is included with each instance
of the <Person> element.

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
</ns:Person>
<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="5678">
 <ns:FirstName>Jane</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
</ns:Person>

Listing 4-8:	 The <Person> elements returned from the typed column.

Now suppose we want to return a specific instance of the <Person> element. One way we
can do this is to further qualify the XQuery expression by adding a reference to the id attri-
bute and a specific attribute value. In the example shown in Listing 4-9, I've added a refer-
ence to the id attribute for both the typed and untyped columns.

42

Level 4 – Querying XML Data

SELECT
 Info_untyped.query(
 '/People/Person[@id=1234]') AS People_untyped,
 Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=5678]') AS People_typed
FROM ClientInfo;

Listing 4-9:	 Retrieving data for a specific <Person> element.

The first thing to notice is that I've enclosed the attribute reference in brackets. In addition, I
preceded the attribute name with an at (@) sign and followed it with an equal and then provid-
ed the attribute value. For the untyped column, I used the value 1234. As a result, the XML
returned from that column includes only the <Person> element whose id value equals
1234, as shown in Listing 4-10.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
</Person>

Listing 4-10:	 The <Person> element with an id value of 1234.

For the typed column, I used the value 5678 in the attribute reference. Notice, however,
that I do not need to include the namespace alias prefix along with the attribute name.
Referencing the namespace in the element name is enough.

Note
When specifying a specific value in your XQuery expression, as I do for the id attribute
value, string values should be enclosed in double quotes. However, the rules for numeric
values are somewhat different. For untyped columns, you can also specify numeric values
in double quotes or without the quotes, but when working with typed columns, you must
conform to the schema, which in this case specifies the id attribute as an INT value.
Consequently, you cannot enclose the value in quotes. If you do, you'll receive an error
when running your statement.

Not surprisingly, the XML returned from the typed column includes only the <Person>
element whose id value equals 5678, as shown in Listing 4-11.

43

Level 4 – Querying XML Data

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="5678">
 <ns:FirstName>Jane</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
</ns:Person>

Listing 4-11:	 The <Person> element with an id value of 5678.

We can refine our XQuery expression even further by adding another child element to the
path name, in this case the <FirstName> element. For the untyped column, we simply add
/FirstName to the expression, and for the typed column, we add /ns:FirstName. List-
ing 4-12 shows what our SELECT statement now looks like.

SELECT
 Info_untyped.query(
 '/People/Person[@id=1234]/FirstName') AS People_untyped,
 Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=5678]/ns:FirstName') AS People_typed
FROM ClientInfo;

Listing 4-12:	 Retrieving the <FirstName> element for a specific <Person> element.

The XML returned from the untyped column now includes only the <FirstName> child
element of the <Person> element whose id value is 1234, as shown in Listing 4-13.

<FirstName>John</FirstName>

Listing 4-13:	 The <FirstName> child element for the <Person> element with an id
value of 1234.

The XML returned from the typed column now includes only the <FirstName> child ele-
ment of the <Person> element whose id value is 5678, as shown in Listing 4-14. Notice
that, even at this level, the namespace is included in the returned value.

<ns:FirstName xmlns:ns="urn:ClientInfoNamespace">Jane</
ns:FirstName>

Listing 4-14:	 The <FirstName> child element for the <Person> element with an id
value of 5678.

44

Level 4 – Querying XML Data

Another way you can reference a specific element within an XQuery expression is to specify
the element's position number, relative to other instances of that element. For example, our
source data includes two instances of the <Person> element. The first instance of that
element is implicitly assigned the number 1 and the second instance the number 2. In the
SELECT statement in Listing 4-15, I use the numbers 1 and 2 to reference those instances.

SELECT
 Info_untyped.query(
 '/People/Person[1]/FirstName') AS People_untyped,
 Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[2]/ns:FirstName') AS People_typed
FROM ClientInfo;

Listing 4-15:	 Using instance numbers to reference instances of the <Person> element.

Notice that instead of specifying an attribute reference, I specify the value [1] for the un-
typed column and the value [2] for the typed column. That means, in the case of the un-
typed column, the [1] indicates that the first instance of the <Person> element should be
returned, or rather, the <FirstName> element of that instance, and for the typed column,
the [2] indicates that the second instance of the <Person> element should be returned.
Although I've used the numerical references, the SELECT statement in Listing 4-15 returns
the same results as the statement in Listing 4-12.

The XML value() method
As handy as the query() method can be, there might be times that you want to retrieve a
specific element or attribute value, rather than returning an XML element. That's where the
value() method comes in. The method not only retrieves a specific value, but does so as a
specified data type. For this reason, when you call the value() method, you must pass in
two arguments—the XQuery expression and the Transact-SQL data type—as shown in the
following syntax:

db_object.value('xquery_exp', 'sql_type')

45

Level 4 – Querying XML Data

Notice that you call the value() method in much the same way you call the query()
method. The only difference is the second argument, in which you specify the data type. For
example, the SELECT statement shown in Listing 4-16 retrieves the <FirstName> value
from the XML and returns it with the VARCHAR data type.

SELECT
 Info_untyped.value(
 '(/People/Person[1]/FirstName)[1]',
 'varchar(20)') AS Name_untyped,
 Info_typed.value(
 'declare namespace ns="urn:ClientInfoNamespace";
 (/ns:People/ns:Person[2]/ns:FirstName)[1]',
 'varchar(20)') AS Name_typed
FROM ClientInfo;

Listing 4-16:	 Retrieving the <FirstName> values from the XML instances.

As the listing shows, you first specify the XQuery expression, followed by a comma, and
then the data type. Like the XQuery expression, the data type must be enclosed in single
quotes. That part should be fairly straightforward. What is not so straightforward is the
XQuery expression itself. Although for both the typed and untyped columns the expressions
are much the same as their counterparts in Listing 4-15, there is a significant difference. Each
expression is enclosed in parentheses and followed by [1]. The parentheses ensure that the
expression is treated as a single unit to which the [1] can be applied.
The [1] means that the first instance of the returned instances is the instance that the expres-
sion should use. For example, suppose your XQuery expression returns multiple <Person>
elements. Surrounding the expression with parentheses and adding the [1] indicates that the
first instance of <Person> should be used. Note, however, that even if your expression re-
turns only one instance, you must still include the [1] because a singleton value is required
by the value()method, and the [1] ensures that only one value can be returned.
In Listing 4-16, I specify [1] after the XQuery expression for both the untyped and typed
columns. And because I've used the value() method in both cases, the SELECT statement
returns only the first names of the two people listed in the XML documents, as shown below.

Name_untyped Name_typed
-------------------- --------------------
John Jane

Listing 4-17:	 The <FirstName> values for the two <Person> elements.

46

Level 4 – Querying XML Data

In some cases, you can eliminate the internal numerical identifier after a specific element
and use only the outer one to identify the XML element. If you do this, however, you must
make sure your outer reference identifies the correct instance. For example, in Listing 4-18, I
removed the numerical references associated with the <Person> element and then modified
the expression for the typed column by changing the final [1] to [2].

SELECT
 Info_untyped.value(
 '(/People/Person/FirstName)[1]',
 'varchar(20)') AS Name_untyped,
 Info_typed.value(
 'declare namespace ns="urn:ClientInfoNamespace";
 (/ns:People/ns:Person/ns:FirstName)[2]',
 'varchar(20)') AS Name_typed
FROM ClientInfo;

Listing 4-18:	 Retrieving the first and second instances of <FirstName>.

Because there are two instances of the <FirstName> element, you can use the final numer-
ic qualifier to distinguish which instance you want to return. The statement returns the same
results as the statement in Listing 4-16.

You can also use the same strategy to return an attribute value. For example, the SELECT
statement in Listing 4-19 retrieves the values of each instance of the id attribute and assigns
the INT data type to the returned values.

SELECT
 Info_untyped.value(
 '(/People/Person/@id)[1]',
 'int') AS Name_untyped,
 Info_typed.value(
 'declare namespace ns="urn:ClientInfoNamespace";
 (/ns:People/ns:Person/@id)[2]',
 'int') AS Name_typed
FROM ClientInfo;

Listing 4-19:	 Retrieving the two instances of the id attributes.

47

Level 4 – Querying XML Data

As you would expect, the SELECT statement returns only the attribute values, as shown in
Listing 4-20.

Name_untyped Name_typed
-------------------- --------------------
1234 5678

Listing 4-20:	 The returned values for the two id attributes.

In addition to defining path names in your XQuery expressions, you can incorporate XQuery
functions that let you further refine your query and manipulate data. For instance, XQuery
supports the count() function, which provides a count of the number of instances returned
by an expression. In Listing 4-21, I use the count() function to return the number of
<Person> elements in the XML document in each XML column.

SELECT
 Info_untyped.value(
 'count(/People/Person)',
 'int') AS Number_untyped,
 Info_typed.value(
 'declare namespace ns="urn:ClientInfoNamespace";
 count(/ns:People/ns:Person)',
 'int') AS Number_typed
FROM ClientInfo;

Listing 4-21:	 Using the count() function to retrieve the number of <Person> elements.

For each XQuery expression, I specify the count() function, followed by the path name,
which is enclosed in parenthesis. Because the count() function itself returns a singleton
value, I do not have to tag the [1] onto the data path, even though I'm using the value()
method. Listing 4-22 shows the results returned for each XML column. As you would expect,
the value 2 is returned in both cases.

Number_untyped Number_typed
-------------- ------------
2 2

Listing 4-22:	 The number of <Person> elements in each XML column.

48

Level 4 – Querying XML Data

Another example of an XQuery function is concat(), which lets you concatenate two or
more values from an XML document. To use the function, you specify each segment that you
want to concatenate as an argument to the function, as demonstrated in Listing 4-23.

SELECT
 Info_untyped.value(
 'concat((/People/Person/FirstName)[2], " ",
 (/People/Person/LastName)[2])',
 'varchar(25)') AS FullName
FROM ClientInfo;

Listing 4-23:	 Using the concat() function to concatenate values.

In this case, I'm passing three arguments into the concat() function, which I enclose in pa-
rentheses and separate with commas. The first and third arguments are basic XQuery expres-
sions that are themselves qualified with parentheses and a numerical tag to indicate which
element instance to return, exactly the sort of expression you would expect to pass to the
value() method. The second argument is merely a blank space, enclosed in double quotes.
The space will be inserted between the first and last names. Listing 4-24 shows the results
that the statement returns.
FullName

Jane Doe

Listing 4-24:	 Returning the full name from the second instance of the <Person> element.

The first and last names have been concatenated into a single value. Both names come from
the second instance of the <Person> element.

Conclusion
As you've seen in this Level, you can use the query() method to retrieve a subset of
data from an XML instance, and you can use the value()method to retrieve individual
element and attribute values from an XML instance. In Level 5, we'll cover the exist()
and nodes() methods. Although these methods are also used to query XML data, the
results they return are not simple XML instances or values.

49

Level 4 – Querying XML Data

In fact, the methods are often used in conjunction with the query() and value() meth-
ods because of the type of data they return.

In Level 6, we'll review the modify() method, the only XML method that lets you manipu-
late XML data. But keep in mind that, as stated earlier, XQuery expressions can get far more
complicated than what I've demonstrated so far or will be demonstrating, so I recommend
you review the XQuery Language Reference if you plan to write many XQuery expressions.
Also note that we'll be using the same test environment in the next Level, so you might want
to keep that around.

50

Level 4 – Querying XML Data

Level 5 – The XML exist() and
nodes() Methods

In Level 4, I introduced you to the query() and value() methods, which are available to
the XML data type and can be used to query data from an XML instance. As you'll recall, the
query() method returns a subset of untyped XML from the target XML column (or other
XML object), and the value() method returns a scalar value of a specified data type.

In this Level, I introduce you to two more XML methods: exist() and nodes(). Like
the query() and value() methods, the exist() and nodes() methods let you query
XML data by specifying an XQuery expression. However, the results returned by the meth-
ods are much different from query() and value(). The exist() method returns a BIT
value, and the nodes() method returns a rowset view used to shred the XML instance. This
will all become clearer as we work through the exercises.

Note
As mentioned in Level 4, XQuery is a complex language. We can touch upon only some
of its elements in this Level. For a more thorough understanding of XQuery and how it's
implemented in SQL Server, see the MSDN XQuery language reference.

To demonstrate the exist() and nodes() methods, I used the same test environment I
set up in Level 4. I created a database named ClientDB, an XML schema collection named
ClientInfoCollection, and a table named ClientInfo (all created on a local
instance of SQL Server 2008 R2), as shown in Listing 5-1.

USE master;
GO

IF DB_ID('ClientDB') IS NOT NULL
DROP DATABASE ClientDB;
GO

CREATE DATABASE ClientDB;
GO

USE ClientDB;
GO

51

http://msdn.microsoft.com/en-us/library/ms189075.aspx

IF OBJECT_ID('ClientInfoCollection') IS NOT NULL
DROP XML SCHEMA COLLECTION ClientInfoCollection;
GO

CREATE XML SCHEMA COLLECTION ClientInfoCollection AS
'<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:ClientInfoNamespace"
targetNamespace="urn:ClientInfoNamespace"
elementFormDefault="qualified">
 <xsd:element name="People">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FirstName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="LastName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="FavoriteBook" type="xsd:string"
minOccurs="0" maxOccurs="5" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>';
GO

IF OBJECT_ID('ClientInfo') IS NOT NULL
DROP TABLE ClientInfo;
GO

CREATE TABLE ClientInfo
(
 ClientID INT PRIMARY KEY IDENTITY,
 Info_untyped XML,
 Info_typed XML(ClientInfoCollection)
);

52

Level 5 – The XML exist() and nodes() Methods

INSERT INTO ClientInfo (Info_untyped, Info_typed)
VALUES
(
 '<?xml version="1.0" encoding="UTF-8"?>
 <People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>',
 '<?xml version="1.0" encoding="UTF-8"?>
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>'
);

Listing 5-1:	 Setting up the test environment for the examples in this Level.

Notice in Listing 5-1 that the ClientInfo table includes two XML columns, one untyped
and one typed. In addition, the listing includes an INSERT statement that adds a row to
the table. If you decide to try out the examples in this Level, you'll need to run this code
before proceeding.

53

Level 5 – The XML exist() and nodes() Methods

The XML exist() method
The exist() method tests for the existence of an element in the targeted XML instance.
That element is specified by the XQuery expression passed into the method. As the following
syntax shows, you enclose the expression in single quotes and parentheses:

db_object.exist('xquery_exp')

The db_object placeholder is the XML column, variable, or parameter that contains the
targeted XML instance, and the xquery_exp placeholder is an expression made up of the
XQuery elements supported by SQL Server.

So far, this is all pretty much like the query() and value() methods described in Lev-
el 4. However, the difference comes in the results being returned.

The exist() method does not retrieve an XML element or one of its values, but instead
returns one of the following values, based on the existence of the element specified in the
XQuery expression:

•	 A BIT value of 1 if the XQuery expression returns a nonempty result, that is,
if the element exists.

•	 A BIT value of 0 if the XQuery expression returns an empty result, that is,
if the element does not exist.

•	 A NULL value if the XML instance is null.
The best way to understand how the exist() method works is to see it in action. In List-
ing 5-2, I use the method to test for the existence of a <FirstName> element with a value
equal to Jane. Notice that I've enclosed the element in brackets and used double quotes for
the string value.

SELECT
 Info_untyped.exist(
 '/People/Person[FirstName="Jane"]')
FROM ClientInfo;

Listing 5-2:	 Verifying the existence of a specific element.

54

Level 5 – The XML exist() and nodes() Methods

Because the specified element exists in the targeted XML instance, the SELECT statement
returns the value 1, which is the result we expected.

As you can see, it's a relatively straightforward process to use the exist() method against
an untyped XML column. To use the method against a typed XML object, you must include the
required namespace-related information, as shown in Listing 5-3.

SELECT
 Info_untyped.exist(
 '/People/Person[FirstName="Jane"]'),
 Info_typed.exist(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[ns:FirstName="Jane"]')
FROM ClientInfo;

Listing 5-3:	 Verifying the existence of an element in a typed column.

As you would expect from reading Level 4, your xquery_exp argument is divided into two
parts, separated by a semicolon, with the entire argument enclosed in single quotes. The first
part is the namespace declaration, which specifies the namespace used by the targeted XML
instance and defines an alias (ns) for that namespace. The second part of the argument is the
path name itself, with ns: inserted before each element. Because the typed column, like the
untyped column, contains the element specified by the XQuery expression, it, too, returns a
value of 1.

But suppose the element specified in the expression does not exist, as is the case in List-
ing 5-4. This time, for both the untyped and typed columns, the exist() method is looking
for a <FirstName> element whose value is equal to Ralph.

SELECT
 Info_untyped.exist(
 '/People/Person[FirstName="Ralph"]'),
 Info_typed.exist(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[ns:FirstName="Ralph"]')
FROM ClientInfo;

Listing 5-4:	 Testing for a nonexistent value in the typed and untyped columns.

Of course, such an element does not exist. As a result, the exist() method, and by exten-
sion the SELECT statement, return a value of 0 for both columns.

55

Level 5 – The XML exist() and nodes() Methods

So far, the examples have merely provided a way to demonstrate how the exist() method
works. In reality, you're much more likely to use the method to check the existence of an ele-
ment before carrying out another operation.

For example, in Listing 5-5, I use the exist() method in a SELECT statement's WHERE
clause to check for the existence of a <Person> element whose id attribute has a value
equal to 5678. If this element exists—that is, the value returned by the exist() method
equals 1—the condition specified in the WHERE clause evaluates to TRUE and the data que-
ried in the SELECT list is returned.

SELECT
 ClientID,
 Info_untyped.value(
 'concat((/People/Person[@id=5678]/FirstName)[1], " ",
 (/People/Person[@id=5678]/LastName)[1])',
 'varchar(25)') AS FullName
FROM ClientInfo
WHERE
 Info_untyped.exist(
 '/People/Person[@id=5678]') = 1;

Listing 5-5:	 Using the WHERE clause to test for the existence of an attribute value.

The SELECT list itself uses the concat() XQuery function and XML value() method to
concatenate the first and last names associated with the <Person> element whose id value
equals 5678.

Listing 5-6 shows the results returned by the SELECT statement. If the WHERE clause had
evaluated to FALSE, the statement would have returned no rows.

ClientID FullName
----------- -------------------------
1 Jane Doe

Listing 5-6:	 The results returned after an attribute's existence has been confirmed.

SQL Server also lets you pass variable values into your XQuery expression, which is handy if
you want to reuse code. In Listing 5-7, for instance, I modified the preceding example so that
the value 5678 could be passed in through the @id variable.

56

Level 5 – The XML exist() and nodes() Methods

SELECT
 ClientID,
 Info_untyped.value(
 'concat((/People/Person[@id=5678]/FirstName)[1], " ",
 (/People/Person[@id=5678]/LastName)[1])',
 'varchar(25)') AS FullName
FROM ClientInfo
WHERE
 Info_untyped.exist(
 '/People/Person[@id=5678]') = 1;

Listing 5-7:	 Using a variable to pass a value into an XQuery expression.

Notice that, in order to call the variable value from within the XQuery expression, I
specified sql:variable("@id"), rather than 5678. Everything else about the
SELECT statement is the same as the preceding example, and, as expected, the statement
returns the same results.

The XML nodes() method
Of all the XML methods we've discussed so far, the nodes() method is perhaps the trickiest
to understand. Unlike the previous methods, which return XML fragments or scalar values,
the nodes() method returns a table (rowset view) with a single column, and each row of
that table contains a logical copy of the targeted XML instance. The purpose of these results
is to let you shred the targeted XML instance into relational data. (This will become clearer
as we work through the examples.)

Because the nodes() method returns the data as a rowset view, you can use that method
only where a table expression is expected in a Transact-SQL statement, such as in the FROM
clause. In addition, you must assign table and column aliases to the method's results, as
shown in the following syntax:

db_object.nodes('xquery_exp') AS table_alias(column_alias)

As with other XML methods, you must specify an XML object and an XQuery expression.
But you then follow with the table alias and column alias, in parentheses. The aliases let you
reference the rowset view from other parts of the SELECT statement.

57

Level 5 – The XML exist() and nodes() Methods

The key to understanding how to use the nodes() method is in the concept of a context
node. Every XML document has an implicit context node, which is at the top Level of the
XML instance. You can think of the context node as a reference point within the XML in-
stance. When you use the nodes() method, the context node is set to a specific element
within each row of data returned by the method. That context node is identified by the XQue-
ry expression you pass into the method. It's the context node that lets you shred the XML
data in a meaningful way.

Let's look at an example to demonstrate how this works. But first, we need to add a row to
our table. Listing 5-8 shows the INSERT statement I used to add the row, which adds data
only to the untyped column (because that's all we need right now).

INSERT INTO ClientInfo (Info_untyped)
VALUES
(
 '<?xml version="1.0" encoding="UTF-8"?>
 <People>
 <Person id="4321">
 <FirstName>Jack</FirstName>
 <LastName>Smith</LastName>
 </Person>
 <Person id="8765">
 <FirstName>Jill</FirstName>
 <LastName>Smith</LastName>
 </Person>
 </People>'
);

Listing 5-8:	 Inserting an additional row into the ClientInfo table.

Now let's get down to the example. In Listing 5-9, I use the nodes() method in the FROM
clause to return a rowset view of the targeted XML instances. When I call the method, I in-
clude an XQuery expression that sets the context node to /People/Person. I also provide
the table and column aliases, People and Person, respectively, so I can reference the row-
set view in the SELECT list. In addition, I use the nodes() method along with the CROSS
APPLY operator in order to associate the ClientInfo table with the rowset view.

58

Level 5 – The XML exist() and nodes() Methods

SELECT
 ClientID,
 Person.query('.') AS Person
FROM ClientInfo CROSS APPLY
 Info_untyped.nodes('/People/Person') AS People(Person);

Listing 5-9:	 Using the nodes() method to shred XML data.

Although the nodes() method returns a rowset view that you can reference in other parts
of the statement, you can refer to that view only through an XML method, as I've done in the
SELECT list. However, as you can see, my XQuery expression is merely a period, which is
shorthand for referencing the context node. Because of this, the SELECT statement returns
the results shown in Table 5-1. (I put the results in a table to make it easier to read the XML
instances in the Person column.)

ClientID Person

1

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
</Person>

1

<Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
</Person>

2

<Person id="4321">
 <FirstName>Jack</FirstName>
 <LastName>Smith</LastName>
</Person>

2

<Person id="8765">
 <FirstName>Jill</FirstName>
 <LastName>Smith</LastName>
</Person>

Table 5-1:	 The returned data relative to the context node.

59

Level 5 – The XML exist() and nodes() Methods

Notice that the results include the <Person> element for each person in each row of the
ClientInfo table. In other words, because each row in the source table contains two
instances of the <Person> element, the rowset view includes two rows for each row in
the table, one for each <Person> element. SQL Server then uses the context node to
iterate through each XML instance in the rowset view and to return the appropriate instance
of <Person>.

Keep in mind that it is the context node that provides the ability to return different results for
each row in the rowset view, not the rowset view itself. As you'll recall, each row in the row-
set view contains a full copy of the targeted XML instance. SQL Server iterates through each
instance based on the element specified by the context node, similar to how a cursor identifies
a current row. However, if you were to call the parent of the context node, your results would
be much different. For example, in Listing 5-10, I use the double period for the query()
method's XQuery expression, which is shorthand for the context node's parent.

SELECT
 ClientID,
 Person.query('..') AS Person
FROM ClientInfo CROSS APPLY
 Info_untyped.nodes('/People/Person') AS People(Person);

Listing 5-10:	 Using the context node's parent accessor to return data.

Because we're calling the context node's parent, every child element within that parent is also
returned, as shown in Table 5-2. As a result, unique elements are no longer returned for each
row in the target table. What this demonstrates, essentially, is that each row in the rowset
view contains the entire XML instance.

60

Level 5 – The XML exist() and nodes() Methods

ClientID Person

1

<People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
</People>

1

<People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
</People>

2

<People>
 <Person id="4321">
 <FirstName>Jack</FirstName>
 <LastName>Smith</LastName>
 </Person>
 <Person id="8765">
 <FirstName>Jill</FirstName>
 <LastName>Smith</LastName>
 </Person>
</People>

61

Level 5 – The XML exist() and nodes() Methods

2

<People>
 <Person id="4321">
 <FirstName>Jack</FirstName>
 <LastName>Smith</LastName>
 </Person>
 <Person id="8765">
 <FirstName>Jill</FirstName>
 <LastName>Smith</LastName>
 </Person>
</People>

Table 5-2:	 The returned data based on the parent accessor.

Chances are, if you're going to use the nodes() method to shred an XML instance, you'll
want to do it in a more meaningful way than what I've done so far. In Listing 5-11, I use the
value() method and concat() function to return the full name for each instance of the
<Person> element.

SELECT
 ClientID,
 Person.value('concat(./FirstName[1], " ",
 ./LastName[1])', 'varchar(30)') AS FullName
FROM ClientInfo CROSS APPLY
 Info_untyped.nodes('/People/Person') AS People(Person);

Listing 5-11:	 Using the context node to return values from child elements.

Because I'm using the value() method, my results from the shredded XML are now re-
turned as VARCHAR values, as shown in Listing 5-12.

62

Level 5 – The XML exist() and nodes() Methods

ClientID FullName
-------- ----------
1 John Doe
1 Jane Doe
2 Jack Smith
2 Jill Smith

Listing 5-12:	 Shredded XML returned by the SELECT statement.

As you can see, the results are now much more useful. The first and last names of each
person listed in the two rows of the ClientInfo table are now returned as relational data.
It can take some practice to get used to using the nodes() method, but when you do get it
figured out, you'll find it a useful tool.

Conclusion
As this Level has demonstrated, you can use the exist() method to check the existence
of an element within an XML document or fragment. Most often, you'll be using the method
in the WHERE clause to verify an element's existence before proceeding with the rest of the
statement. The nodes() method serves a different function. It lets you shred an XML
instance and return the information as relational data. In the next level, I'll discuss the mod-
ify() method, which is the only XML method that lets you manipulate XML data. In the
meantime, don't forget to review the XQuery Language Reference so you better understand
how to write XQuery expressions.

63

Level 5 – The XML exist() and nodes() Methods

Level 6 – Inserting Data into an
XML Instance

In Levels 4 and 5, we looked at the methods you can use to retrieve element-specific data
from an XML column, variable, or parameter. Those methods include query(), value(),
exist(), and nodes(), which each provide a different means for accessing data in an
XML instance. As a minimum, when you call one of those methods, you pass in an XQuery
expression that defines what data to retrieve from that instance.

In this Level, we look at the modify() method, the only method available to the XML data
type that lets you manipulate XML data. Unlike the other XML methods, the modify()
method takes an XML Data Modification Language (XML DML) expression as an argument,
rather than a regular XQuery expression. XML DML is an extension of the XQuery language
that lets you insert, update, and delete XML data. In this Level, we'll be concerned specifi-
cally with how to use the method to insert data. In subsequent Levels, we'll review how to
use the method to modify and delete data.

When you call the modify() method, you must pass in an XML DML expression. The
expression is the method's only argument, as shown in the following syntax:

db_object.modify('xml_dml')

As you can see, you simply append the XML object name with a period and method name,
followed by the XML DML expression enclosed in parentheses and single quotes. Not
surprisingly, it's the expression itself where things get a bit more complicated. This Level fo-
cuses on how to create various XML DML expressions and provides a number of examples
that demonstrate how to insert data into an XML instance.

Note
Many of the elements that make up an XML DML expression use basic XQuery syntax,
which itself is a complex language. As with previous Levels, we can touch upon only some
of the XQuery elements. For a more thorough understanding of XQuery and how it's
implemented in SQL Server, see the MSDN XQuery language reference. For more
details about XML DML, see the MSDN article "XML Data Modification Language
(XML DML)."

64

http://msdn.microsoft.com/en-us/library/ms189075.aspx
http://msdn.microsoft.com/en-us/library/ms177454.aspx
http://msdn.microsoft.com/en-us/library/ms177454.aspx

Setting up your test environment
If you want to try out the exercises in this Level, you'll first need to run the Transact-
SQL code shown in Listing 6-1. The code creates the ClientDB database, adds the
ClientInfoCollection XML schema collection to the database, and then creates
and populates the ClientInfo table.

USE master;
GO

IF DB_ID('ClientDB') IS NOT NULL
DROP DATABASE ClientDB;
GO

CREATE DATABASE ClientDB;
GO

USE ClientDB;
GO

IF OBJECT_ID('ClientInfoCollection') IS NOT NULL
DROP XML SCHEMA COLLECTION ClientInfoCollection;
GO

CREATE XML SCHEMA COLLECTION ClientInfoCollection AS
'<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:ClientInfoNamespace"
targetNamespace="urn:ClientInfoNamespace"
elementFormDefault="qualified">
 <xsd:element name="People">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FirstName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="LastName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="FavoriteBooks" minOccurs="0"

65

Level 6 – Inserting Data into an XML Instance

maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Book" type="xsd:string"
minOccurs="0" maxOccurs="5" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>';
GO

IF OBJECT_ID('ClientInfo') IS NOT NULL
DROP TABLE ClientInfo;
GO

CREATE TABLE ClientInfo
(
 ClientID INT PRIMARY KEY IDENTITY,
 Info_untyped XML,
 Info_typed XML(ClientInfoCollection)
);

INSERT INTO ClientInfo (Info_untyped, Info_typed)
VALUES
(
 '<?xml version="1.0" encoding="UTF-8"?>
 <People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>',

66

Level 6 – Inserting Data into an XML Instance

 '<?xml version="1.0" encoding="UTF-8"?>
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>'
);

Listing 6-1:	 Setting up the test environment for the examples in this Level.

Notice that the code includes an INSERT statement that adds a row of data to the Cli-
entInfo table. That data includes two XML instances, one that targets the untyped column
and one that targets the typed column.

If you tried out the examples in Levels 4 and 5, you'll find the code in Listing 6-1 to be
slightly different from those Levels. The schema defined in this collection contains a few
extra elements. Also note, you should run the examples in the order they're provided, because
some of them build on previous ones.

Inserting data into an XML instance
To insert data into an XML instance, your XML DML expression must include the keywords
and XQuery expressions necessary to indicate the type of data modification operation to per-
form as well as what and where to add the data, as shown in the following syntax:

db_object.modify (
'insert xquery_exp1
[as first | as last] into | after | before
xquery_exp2 ')

As you can see, when we break apart the XML DML expression, our method call becomes
much more complex. Notice that the expression includes several individual elements:

•	 The INSERT keyword indicates that this is an insert operation.
•	 The xquery_exp1 placeholder is an XQuery expression that defines one or more

XML components to be inserted into the XML data.

67

Level 6 – Inserting Data into an XML Instance

•	 The following directional keywords identify where in the targeted node (as defined
by xquery_exp2) to insert the data:
•	 [as first | as last] into: The data is inserted as one or more child

nodes to the targeted node. If child nodes already exist, you must also specify
the as first or as last keywords. If you specify as first, the new data
is added before the existing child nodes. If you specify as last, the new data
is added after the existing child nodes.

•	 after: Data is inserted as siblings to the targeted node, directly after that
node.

•	 before: Data is inserted as siblings to the targeted node, directly before that
node.

•	 The xquery_exp2 placeholder is an XQuery expression that defines the XML
node that is the target of the data to be inserted.

Once you understand how the pieces fit together, the XML DML expression is fairly straight-
forward. And the best way to gain that understanding is to see these expressions in action. So
let's get started.

Listing 6-2 shows an UPDATE statement that includes the modify() method, which I use
to insert the <FavoriteBooks> element into the first instance of the <Person> element,
as identified by the id attribute value 1234.

UPDATE ClientInfo
SET Info_untyped.modify(
 'insert <FavoriteBooks />
 as last into
 (/People/Person[@id=1234])[1] ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-2:	 Adding an element to an XML fragment.

The first thing worth pointing out is that I'm using the modify() method as part of the SET
clause of an UPDATE statement. When you use the modify() method, you must do so
within a data modification structure such as a SET clause.

68

Level 6 – Inserting Data into an XML Instance

As for the XML DML expression itself, I start with the INSERT keyword, followed by
the expression that identifies the data to be inserted, in this case, the <FavoriteBooks>
element. Notice that I use the shorthand notation (/>) to specify the closing element, rather
than specifying <FavoriteBooks></FavoriteBooks>. However, you can take
either approach.

Next, I include the as last into keywords to specify that the new element should be
added to the end of the child elements of the target node.

The final expression, (/People/Person[@id=1234])[1], is the target node. In this
case, that node is the first instance of the <Person> element. Notice that I add [1] to the
end of the expression. The modify() method requires that the expression return a single
target node. Adding a bracketed value in this way ensures that only one value is returned,
in this case, the first one. Even if only one node would be returned (as is the case here), you
must still specify the [1].

That's all there is to my XML DML expression, except that I've also enclosed it in paren-
theses and single quotes. I then tagged a SELECT statement onto the example to verify the
operation. Listing 6-3 shows the XML fragment returned by that statement. As you can see,
the <FavoriteBooks> node has been added as a child node to the <Person> element,
after the existing child elements.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks />
</Person>

Listing 6-3:	 XML fragment with new element.

You probably noticed that the example shown in Listing 6-2 modifies data in the untyped
XML column (Info_untyped). However, I can achieve similar results in the typed col-
umns. In Listing 6-4, I modify the XML DML expression to include the namespace refer-
ence. As you saw with the XQuery expressions used for the other XML methods, the XML
DML expression is divided into two sections, separated by a semicolon. The first section is
the namespace declaration.

69

Level 6 – Inserting Data into an XML Instance

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 insert <ns:FavoriteBooks />
 as last into
 (/ns:People/ns:Person[@id=1234])[1] ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-4:	 Adding an element to a typed XML column.

The second section of the XML DML expression is similar to the previous example, except
that I precede each referenced node with the namespace alias and a colon (ns:). Everything
else is the same.

Listing 6-5 shows the results returned by the SELECT statement. As you can see, the
<FavoriteBooks> element has been added to the typed XML instance.

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks />
</ns:Person>

Listing 6-5:	 XML fragment with new element.

Now let's look at another example. In Listing 6-6, I add the <Book> element as a child to
the <FavoriteBooks> element. This time, however, I include an element value,
Slaughterhouse-Five.

UPDATE ClientInfo
SET Info_untyped.modify(
 'insert <Book>Slaughterhouse-Five</Book>
 into
 (/People/Person[@id=1234]/FavoriteBooks)[1] ')
WHERE ClientID = 1;

70

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-6:	 Adding a book to favorite books.

Notice that, after the first expression, I include the into keyword, but not the as first or
as last keywords. Because the <FavoriteBooks> node currently contains no child
elements, I do not need either of these options. Listing 6-7 shows the results returned by the
SELECT statement in this example. As you can see, the <Book> node has been added as a
child element to the <FavoriteBooks> node.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <Book>Slaughterhouse-Five</Book>
 </FavoriteBooks>
</Person>

Listing 6-7:	 XML fragment with a new book listed.

Again, we can do the same thing for the typed column. As Listing 6-8 shows, I need only add
the necessary namespace declaration and references. That includes preceding each node with
the namespace alias and colon (ns:), even if it is a closing node.

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 insert <ns:Book>Slaughterhouse-Five</ns:Book>
 into
 (/ns:People/ns:Person[@id=1234]/ns:FavoriteBooks)[1] ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-8:	 Adding a book to the XML in a typed column.

71

Level 6 – Inserting Data into an XML Instance

Not surprisingly, the SELECT statement returns an XML instance that includes the <Book>
element, as shown in Listing 6-9.

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks>
 <ns:Book>Slaughterhouse-Five</ns:Book>
 </ns:FavoriteBooks>
</ns:Person>

Listing 6-9:	 XML fragment with new book.

Now let's look at how to add an attribute to an existing element. To do so, you must specify
the attribute keyword, attribute name, and attribute value after the INSERT keyword.
For example, the UPDATE statement in Listing 6-10 creates an attribute named rating and
sets its value to 5.

UPDATE ClientInfo
SET Info_untyped.modify(
 'insert attribute rating {"5"}
 into
 (/People/Person[@id=1234]/FavoriteBooks/Book)[1] ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-10:	 Adding an attribute to an XML element.

Notice that I enclose the attribute value in curly brackets and double quotes and that I specify
the into keyword without the as first or as last option. Because we're not concerned
with child elements in this case, the optional keywords aren't necessary.

The final expression in the XML DML expression identifies the target node, which in this
case is the <Book> element. This is the element that will receive the new attribute. List-
ing 6-11 shows the results returned by the SELECT statement. As you would expect, the
<Book> element now includes the rating attribute and its associated value of 5.

72

Level 6 – Inserting Data into an XML Instance

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <Book rating="5">Slaughterhouse-Five</Book>
 </FavoriteBooks>
</Person>

Listing 6-11:	 XML element with the new attribute.

Now suppose we want to add another book to our list of books. One way we can do this is
to use the into keyword along with one of the optional values to specify where to place the
new element. However, another approach is to instead use the after keyword, which inserts
the node as a sibling element after the specified node. That means your target node must be
specific enough to identify where the new element should be inserted. For example, in List-
ing 6-12, I add a second <Book> element after the first one. To do so, my target expression
specifically references that first <Book> node.

UPDATE ClientInfo
SET Info_untyped.modify(
 'insert <Book>Beloved</Book>
 after
 (/People/Person[@id=1234]/FavoriteBooks/Book)[1] ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-12:	 Inserting a second book in the XML fragment.

By taking this approach, I do not have to be concerned with the optional keywords as first
or as last. The after keyword is enough. The key is to make sure my second expression
properly targets the instance of <Book> that I want my new element to follow, which I do
by using the [1] to indicate that the first instance should be used. As expected, the SELECT
statement returns the results shown in Listing 6-13. Notice that the second <Book> element
has been added in the expected location.

73

Level 6 – Inserting Data into an XML Instance

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <Book rating="5">Slaughterhouse-Five</Book>
 <Book>Beloved</Book>
 </FavoriteBooks>
</Person>

Listing 6-13:	 XML fragment with the second book.

Up to this point, we've added only one node to our target element in each of the examples.
However, you can specify multiple nodes in a single XML DML expression. For example, in
the UPDATE statement shown in Listing 6-14, I insert two instances of the <Book> element
into the target node.

UPDATE ClientInfo
SET Info_untyped.modify(
 'insert (
 <Book>Mrs Dalloway</Book>,
 <Book>One Hundred Years of Solitude</Book>)
 after
 (/People/Person[@id=1234]/FavoriteBooks/Book)[2] ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-14:	 Inserting two books at once into the XML element.

As you can see, I enclose the two <Book> elements in parentheses and separate them with a
comma. The rest of the XML DML expression is just like the preceding example, except for
the target element. In this case, I use [2] to specify that the new books should follow
the second <Book> instance, rather than the first. Listing 6-15 shows the results returned by
the SELECT statement. As expected, the <FavoriteBooks> element now contains four
child elements.

74

Level 6 – Inserting Data into an XML Instance

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <Book rating="5">Slaughterhouse-Five</Book>
 <Book>Beloved</Book>
 <Book>Mrs Dalloway</Book>
 <Book>One Hundred Years of Solitude</Book>
 </FavoriteBooks>
</Person>

Listing 6-15:	 XML element with the two additional books.

Now let's look at the example shown in Listing 6-16. This time, I insert a comment as a
child to the <FavoriteBooks> element, but before all the <Book> elements. To do so, I
specify the INSERT keyword followed by an XQuery expression, as I do in the other exam-
ples. However, the expression in this case is the comment, which is denoted by the opening
comment tag (<!--) tag and the closing tag (-->).

UPDATE ClientInfo
SET Info_untyped.modify(
 'insert <!-- Books rated on scale 1-5 -->
 before
 (/People/Person[@id=1234]/FavoriteBooks/Book)[1] ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 6-16:	 Inserting a comment in an XML fragment.

After the first expression, I specify the before keyword, followed by the node that I want
to precede with the comment, which in this case is the first <Book> element. Listing 6-17
shows the results now returned by the SELECT statement.

75

Level 6 – Inserting Data into an XML Instance

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <Book rating="5">Slaughterhouse-Five</Book>
 <Book>Beloved</Book>
 <Book>Mrs Dalloway</Book>
 <Book>One Hundred Years of Solitude</Book>
 </FavoriteBooks>
</Person>

Listing 6-17:	 XML fragment with the new comment.

As the results indicate, the comment has been added as a child to the <FavoriteBooks>
element, before all the <Book> elements.

Conclusion
In this Level, you learned about the many ways you can use the modify() method to insert
a node into an XML instance. As you've seen, you can add a node as a child element of the
targeted node or as a sibling element to that node. You can also specify where the new ele-
ment should be located among the other elements. In addition, the modify() method lets
you add attributes and comments to your XML instance, as well as adding new elements. In
the next Level, you'll learn how to use the method to modify element and attribute values in
your XML instance.

76

Level 6 – Inserting Data into an XML Instance

Level 7 – Updating Data in an
XML Instance

Level 6 introduced you to the modify() method, which is available to the XML data type
for manipulating data. The Level showed you how to use the method to insert data into an
XML instance. As the examples demonstrated, the method provides several options that let
you control how you add the data.

In this Level, you'll learn how to use the modify() method to update data in an XML
instance. As is the case when inserting data, the method takes an XML Data Modification
Language (XML DML) expression as an argument when updating the data. XML DML is
an extension of the XQuery language that lets you insert, update, and delete data in an
XML instance.

Note
As with previous Levels, we can touch upon only some of the XML DML and XQuery
elements in this Level. For a more thorough understanding of XQuery and how it's imple-
mented in SQL Server, see the MSDN XQuery language reference. For more details about
XML DML, see the MSDN article "XML Data Modification Language (XML DML)."

To try out the examples in this Level, you'll first need to run the Transact-SQL code
shown in Listing 7-1. The code creates the ClientDB database, adds the ClientInfo-
Collection XML schema collection to the database, and then creates and populates the
ClientInfo table.

USE master;
GO

IF DB_ID('ClientDB') IS NOT NULL
DROP DATABASE ClientDB;
GO

CREATE DATABASE ClientDB;
GO

USE ClientDB;

77

http://msdn.microsoft.com/en-us/library/ms189075.aspx
http://msdn.microsoft.com/en-us/library/ms177454.aspx

GO

IF EXISTS(
 SELECT * FROM sys.xml_schema_collections
 WHERE name = 'ClientInfoCollection')
DROP XML SCHEMA COLLECTION ClientInfoCollection;
GO

CREATE XML SCHEMA COLLECTION ClientInfoCollection AS
'<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:ClientInfoNamespace"
targetNamespace="urn:ClientInfoNamespace"
elementFormDefault="qualified">
 <xsd:element name="People">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FirstName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="LastName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="FavoriteBooks" minOccurs="0"
maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Book" minOccurs="0"
maxOccurs="5">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="rating"
type="xsd:decimal" />
 <xsd:attribute name="recommend"
type="xsd:string" />
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

78

Level 7 – Updating Data in an XML Instance

 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>';
GO

IF OBJECT_ID('ClientInfo') IS NOT NULL
DROP TABLE ClientInfo;
GO

CREATE TABLE ClientInfo
(
 ClientID INT PRIMARY KEY IDENTITY,
 Info_untyped XML,
 Info_typed XML(ClientInfoCollection)
);

INSERT INTO ClientInfo (Info_untyped, Info_typed)
VALUES
(
 '<?xml version="1.0" encoding="UTF-8"?>
 <People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <Book rating="5">Slaughterhouse-Five</Book>
 </FavoriteBooks>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>',
 '<?xml version="1.0" encoding="UTF-8"?>
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->

79

Level 7 – Updating Data in an XML Instance

 <Book rating="5">Slaughterhouse-Five</Book>
 </FavoriteBooks>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>'
);

Listing 7-1:	 Setting up the test environment for the examples in this Level.

The code in Listing 7-1 includes an INSERT statement that adds a row of data to the Cli-
entInfo table. The row contains two XML instances, one that targets the untyped column
and one that targets the typed column. Otherwise, the elements, attributes, and values that
make up each instance are the same.

I created the code in Listing 7-1 on a local instance of SQL Server 2012, and then created the
following examples in the same environment. Once you've set up this environment on your
system, you'll be ready to try out these examples.

Updating data in an XML instance
You can use the modify() method to update specific element and attribute values in an
XML instance. When the method is used in this way, the XML DML expression must include
the replace value of keywords and the with keyword, along with two expressions,
as shown in the following syntax:

db_object.modify(
'replace value of xquery_exp
with value_exp')

The first expression, xquery_exp, is an XQuery expression that defines the target element
or attribute whose value will be modified. The second expression is a literal value or expres-
sion that defines the new value to be inserted into the target element or attribute. Together the
keywords and expressions must be enclosed in single quotes and parentheses.

80

Level 7 – Updating Data in an XML Instance

Let's look at an example that demonstrates how the method works to modify data. In List-
ing 7-2, the UPDATE statement uses the method to change the name of the book listed in the
Info_untyped column.

UPDATE ClientInfo
SET Info_untyped.modify(
 'replace value of
 (/People/Person[@id=1234]/FavoriteBooks/Book/text())[1]
 with "The Catcher in the Rye" ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 7-2:	 Updating an element value in an untyped XML instance.

The first thing to note is that the XML DML expression begins with the replace value
of keywords, followed by an XQuery expression that specifies the first <Book> child ele-
ment for the person with an id attribute value of 1234. As you saw in other examples of the
modify() method, the XQuery expression in this case must return a scalar value. For this
example, [1] is used to indicate that the first instance of the <Book> element be returned.
Even if there is only one instance of an element, as in this situation, the numerical qualifier
must still be specified.

Notice also the text() function appended to the end of the path expression. The function
returns only the element value, as opposed to the metadata that defines it. For an element in
an untyped column, you must specify this function (or some comparable expression) so that
your path specifically targets that value. If the function is not specified, SQL Server returns
an error.

The next component of the XML DML expression is the with keyword, followed by
the value expression, which in this case is the literal value The Catcher in the Rye.
Notice that you must enclose literal values in double quotes. When you run the UPDATE
statement, this value replaces the existing value (Slaughterhouse-Five). The SELECT
statement appended onto Listing 7-2 confirms that this is the case, as shown in the results in
Listing 7-3. As you can see, the <Book> element now includes the new title.

81

Level 7 – Updating Data in an XML Instance

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <Book rating="5">The Catcher in the Rye</Book>
 </FavoriteBooks>
</Person>

Listing 7-3:	 The updated element value in the untyped XML instance.

The process for updating an element value in a typed column is similar to that of an untyped
column. As to be expected, you must specify the namespace information, as shown in List-
ing 7-4. As you've seen with other XQuery and XML DML expressions, the expression is
divided into two parts, separated by a semicolon. The first part declares the namespace and
assigns an alias to that namespace. The second part is similar to what you specify for an
untyped column, except that you include the namespace alias in your element references and
you do not use the text() function in your XQuery expression.

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 replace value of
 (/ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/ns:Book)[1]
 with "The Catcher in the Rye" ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 7-4:	 Updating an element value in a typed XML instance.

SQL Server does not support the use of the text() function for typed columns. If you use
it, SQL Server will return an error. This, of course, is opposite from what happens with un-
typed columns, so when you use the modify() method to update element values, you need
to be aware of this difference.

82

Level 7 – Updating Data in an XML Instance

Otherwise, there are no other surprises when working with typed columns. As long as you de-
clare your namespace correctly and specify the alias reference (in this case, ns:), you should
have no problem, and your SELECT statement should return results similar to those shown in
Listing 7-5. As you can see, the book title has been updated to the new value.

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <ns:Book rating="5">The Catcher in the Rye</ns:Book>
 </ns:FavoriteBooks>
</ns:Person>

Listing 7-5:	 The updated element value in the typed XML instance.

You can just as easily update an attribute value as you can an element value. In your XQuery
expression, specify a path that targets the specific attribute. For example, the XQuery expres-
sion in Listing 7-6 targets the <Book> element's rating attribute. Notice that you simply
append the name of attribute—along with the "at" (@) symbol—onto the path expression.

UPDATE ClientInfo
SET Info_untyped.modify(
 'replace value of
 (/People/Person[@id=1234]/FavoriteBooks/Book/@rating)[1]
 with "4.5" ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 7-6:	 Updating an attribute value in an untyped XML instance.

After you've identified the target attribute, you can then specify a value expression that pro-
vides a new value for that attribute. In this case, the new value is 4.5, which is confirmed
in the results returned by the SELECT statement (shown in Listing 7-7). As you can see, the
new value has been assigned to the attribute.

83

Level 7 – Updating Data in an XML Instance

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <Book rating="4.5">The Catcher in the Rye</Book>
 </FavoriteBooks>
</Person>

Listing 7-7:	 The updated attribute value in the untyped XML instance.

As is to be expected, the process of updating an attribute column in a typed column is
similar to an untyped column, except for having to provide the namespace information.
Listing 7-8 shows the UPDATE statement needed to update the rating attribute in the
Info_typed column. Notice that the XML DML expression includes the namespace
declaration and uses the namespace alias in all the element references. Otherwise, the basic
components are the same.

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 replace value of
 (/ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/ns:Book/@
rating)[1]
 with 4.5 ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 7-8:	 Updating an attribute value in a typed XML instance.

Once again, if we run the SELECT statement appended to the listing, we'll find that the at-
tribute value has been updated to 4.5, as shown in Listing 7-9.

84

Level 7 – Updating Data in an XML Instance

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <ns:Book rating="4.5">The Catcher in the Rye</ns:Book>
 </ns:FavoriteBooks>
</ns:Person>

Listing 7-9:	 The updated attribute value in the typed XML instance.

In the examples we've looked at so far, our value expression has been a literal value enclosed
in double quotes. However, that expression can be far more complex. In the example shown
in Listing 7-10, the value expression in the second UPDATE statement is an if…then…
else expression that sets the value of the recommend attribute based on the value of the
rating attribute.

UPDATE ClientInfo
SET Info_untyped.modify(
 'insert attribute recommend {"true/false"}
 into
 (/People/Person[@id=1234]/FavoriteBooks/Book)[1] ')
WHERE ClientID = 1;

UPDATE ClientInfo
SET Info_untyped.modify(
 'replace value of
 (/People/Person[@id=1234]/FavoriteBooks/Book/@recommend)[1]
 with (
 if (/People/Person[@id=1234]/FavoriteBooks/Book[1]/@rating >
4)
 then "true"
 else "false") ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 7-10:	 Using conditional logic to update an attribute value in an untyped
XML instance.

85

Level 7 – Updating Data in an XML Instance

The first UPDATE statement adds the recommend attribute to the <Book> element and sets
its initial value to true/false. The second UPDATE statement then modifies the attribute's
value. The beginning of the XML DML expression in that statement is similar to what you've
seen in previous examples. After the replace value of keywords, an XQuery expression
identifies the target attribute, recommend. This expression is then followed by the with
keyword. Everything after that keyword, enclosed in parentheses, is the value expression.

The value expression begins with the if clause, which specifies that the rating attribute
must have a value greater than 4 in order for the clause's condition to evaluate to true. If the
condition does evaluate to true, the value of the recommend attribute is set to true, as
specified in the then clause. Otherwise, the recommend value is set to false, as speci-
fied in the else clause. In other words, the rating attribute must have a value greater
than 4 in order for the recommend attribute is set to true, otherwise the attribute is set
to false.

Because the rating attribute currently has a value of 4.5, the recommend attribute will
be set to true when you run the UPDATE statement. You can verify these changes by view-
ing the results of the SELECT statement, which are shown in Listing 7-11. As you can see,
the recommend attribute has been added to the <Book> element and the attribute's value
has been set to true.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <Book rating="4.5" recommend="true">The Catcher in the Rye</
Book>
 </FavoriteBooks>
</Person>

Listing 7-11:	 The updated attribute value in the untyped XML instance.

You can achieve the same results for the typed column by providing the expected
namespace information, as shown in Listing 7-12. Notice that the namespace is declared
and referenced throughout. That includes the if clause in the value expression of the
second UPDATE statement.

86

Level 7 – Updating Data in an XML Instance

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 insert attribute recommend {"true/false"}
 into
 (/ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/ns:Book)[1] ')
WHERE ClientID = 1;

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 replace value of
 (/ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/ns:Book/@
recommend)[1]
 with (
 if (/ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/
ns:Book[1]/@rating > 4)
 then "true"
 else "false") ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 7-12:	 Using conditional logic to update an attribute value in a typed XML instance.

Once again, if you run the SELECT statement appended to the example, your results will
reflect the new attribute and its updated value, as shown in Listing 7-13, overleaf.

87

Level 7 – Updating Data in an XML Instance

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <ns:Book rating="4.5" recommend="true">The Catcher in the Rye</
ns:Book>
 </ns:FavoriteBooks>
</ns:Person>

Listing 7-13:	 The updated attribute value in the typed XML instance.

As before, you can see that the recommend attribute has been added to the <Book>
element and the attribute's value has been set to true.

Conclusion
Using the modify() method to update data in an XML column requires that you
provide the necessary keywords and define the XQuery and value expressions in your
XML DML expression. You can use this approach to update both element and attribute
values in either typed or untyped XML instances. When updating data in a typed column,
you must provide the necessary namespace information, just like you saw it done in previous
Levels. In Level 8, you'll learn how to use the modify() method to delete elements and
attributes from an XML instance.

88

Level 7 – Updating Data in an XML Instance

Level 8 – Deleting Data from an
XML Instance

In Levels 6 and 7, you learned how to use the modify() method (available to the XML data
type) to insert and update data in an XML instance. As you saw, the method provides several
options that let you control how you manipulate the data.

In this Level, you'll learn how to use the modify() method to delete data from an XML in-
stance. As is the case when inserting or updating data, the method takes an XML Data Modi-
fication Language (XML DML) expression as an argument when deleting the data. XML
DML is an extension of the XQuery language that lets you insert, update, and delete data in
an XML instance.

Note
As with previous Levels, we can touch upon only some of the XML DML and XQuery
elements in this Level. For a more thorough understanding of XQuery and how it's imple-
mented in SQL Server, see the MSDN XQuery language reference. For more details about
XML DML, see the MSDN article "XML Data Modification Language (XML DML)".

This Level includes several examples that demonstrate how to delete data from both typed
and untyped XML instances. If you want to try these examples, you'll first need to run the
Transact-SQL code shown in Listing 8-1. The code creates the ClientDB database, adds the
ClientInfoCollection XML schema collection to the database, and then creates and
populates the ClientInfo table.

USE master;
GO

IF DB_ID('ClientDB') IS NOT NULL
DROP DATABASE ClientDB;
GO

CREATE DATABASE ClientDB;
GO

USE ClientDB;

89

http://msdn.microsoft.com/en-us/library/ms189075.aspx
http://msdn.microsoft.com/en-us/library/ms177454.aspx

GO

IF EXISTS(
 SELECT * FROM sys.xml_schema_collections
 WHERE name = 'ClientInfoCollection')
DROP XML SCHEMA COLLECTION ClientInfoCollection;
GO

CREATE XML SCHEMA COLLECTION ClientInfoCollection AS
'<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="urn:ClientInfoNamespace"
targetNamespace="urn:ClientInfoNamespace"
elementFormDefault="qualified">
 <xsd:element name="People">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Person" minOccurs="1"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="FirstName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="LastName" type="xsd:string"
minOccurs="1" maxOccurs="1" />
 <xsd:element name="FavoriteBooks" minOccurs="0"
maxOccurs="1">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Book" minOccurs="0"
maxOccurs="5">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="rating"
type="xsd:decimal" />
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer"

90

Level 8 – Deleting Data from an XML Instance

use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>';
GO

IF OBJECT_ID('ClientInfo') IS NOT NULL
DROP TABLE ClientInfo;
GO

CREATE TABLE ClientInfo
(
 ClientID INT PRIMARY KEY IDENTITY,
 Info_untyped XML,
 Info_typed XML(ClientInfoCollection)
);

INSERT INTO ClientInfo (Info_untyped, Info_typed)
VALUES
(
 '<?xml version="1.0" encoding="UTF-8"?>
 <People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <Book rating="5">Slaughterhouse-Five</Book>
 </FavoriteBooks>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>',
 '<?xml version="1.0" encoding="UTF-8"?>
 <People xmlns="urn:ClientInfoNamespace">
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->

91

Level 8 – Deleting Data from an XML Instance

 <Book rating="5">Slaughterhouse-Five</Book>
 </FavoriteBooks>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>'
);

Listing 8-1:	 Setting up the test environment for the examples in this Level.

The code in Listing 8-1 is similar to what you saw in Level 7. In addition to creating the
schema and table, it also includes an INSERT statement that adds a row of data to the Cli-
entInfo table. The row contains two XML instances, one that targets the untyped column
and one that targets the typed column. Otherwise, the elements, attributes, and values that
make up each instance are the same.

I created the code in Listing 8-1 on a local instance of SQL Server 2012. I then created the
examples in the following section in that same environment. Once you've set up this environ-
ment on your system, you'll be ready to try out these examples.

Deleting data from an XML instance
You can use the modify() method to delete specific components from an XML instance.
Using the method to delete data is for the most part easier than using it to insert or update
data. You simply specify the delete keyword, followed by an XQuery expression that
identifies the XML component to be deleted. The following syntax shows how to use the
modify() method to delete XML data:

db_object.modify('delete xquery_exp')

Notice that, as you saw when inserting and deleting data, the XML DML expression is
enclosed in single quotes and parentheses. The XML DML expression itself is very
straightforward.

To demonstrate how easy it is to delete data, let's start by removing an attribute from the un-
typed XML instance in our ClientInfo table. In Listing 8-2, the UPDATE statement uses
the modify() method to delete data from the Info_untyped column.

92

Level 8 – Deleting Data from an XML Instance

UPDATE ClientInfo
SET Info_untyped.modify(
 'delete
 /People/Person[@id=1234]/FavoriteBooks/Book[1]/@rating ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 8-2:	 Deleting an attribute from an untyped XML instance.

We begin our XML DML expression by specifying the delete keyword. This is followed
by an XQuery path expression that specifies the attribute to be deleted. Notice that the path
specifies the first instance of the <Book> element and the rating attribute within that
element. The attribute name, which is preceded with the at (@) symbol, follows the element
name within the path.

Because the rating attribute within the <Book> element is being specified, the attribute
will be removed from the XML instance when you run the UPDATE statement. Listing 8-3
shows the results returned by the SELECT statement tagged onto the example in Listing 8-2.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <Book>Slaughterhouse-Five</Book>
 </FavoriteBooks>
</Person>

Listing 8-3:	 The <Book> element without the rating attribute in the untyped XML.

As the listing shows, the rating attribute is no longer included in the <Book> element.
You can see that deleting an attribute from an untyped XML instance is pretty painless. And
it's almost just as easy to delete an attribute from a typed instance. The main difference, of
course, is that you must specify the necessary namespace declaration and references. List-
ing 8-4 demonstrates how this is done.

93

Level 8 – Deleting Data from an XML Instance

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 delete
 /ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/ns:Book[1]/@
rating ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 8-4:	 Deleting an attribute from a typed XML instance.

If you tried examples in previous Levels that access typed XML instances, there should be
no surprises here. You divide your XML DML expression into two parts, separated by a
semicolon. In the first part, you declare you namespace and assign an alias to that namespace.
In this case, the alias is ns. You then use that alias, along with a colon, in the element refer-
ences in the second part of your XML DML expression. However, as you can see, you don't
have to include the namespace reference for your attribute. Listing 8-5 shows the results now
returned by the SELECT statement.

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks>
 <!-- Books rated on scale 1-5 -->
 <ns:Book>Slaughterhouse-Five</ns:Book>
 </ns:FavoriteBooks>
</ns:Person>

Listing 8-5:	 The <Book> element without the rating attribute in the typed XML.

Notice that the rating attribute has been removed from the <Book> element. Also notice
that, whether working with typed or untyped columns, when you remove a component such
as an attribute, you're also removing any data values associated with that component.

94

Level 8 – Deleting Data from an XML Instance

In addition to removing attributes, you can remove components such as comments from
an XML instance. To do so, you tag the comment() function onto the XQuery expression
that identifies the element containing the comment. For example, in Listing 8-6 I use the
comment() function to remove the comment from the <FavoriteBooks> element.

UPDATE ClientInfo
SET Info_untyped.modify(
 'delete
 /People/Person[@id=1234]/FavoriteBooks/comment()[1] ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 8-6:	 Removing a comment from an untyped column.

Because an element can contain multiple comments, you should add to the end of your
XQuery expression a numerical reference that points to the comment that should be deleted.
In this case, I use [1] to designate that the first comment should be deleted. (There is only
one comment in the XML instance.) The SELECT statement now returns the results shown in
Listing 8-7.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks>
 <Book>Slaughterhouse-Five</Book>
 </FavoriteBooks>
</Person>

Listing 8-7:	 The <FavoriteBooks> element without the comment.

You can, of course, just as easily delete a comment from a typed XML instance, as long as
you include the proper namespace declaration and references, as shown in Listing 8-8.

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 delete

95

Level 8 – Deleting Data from an XML Instance

 /ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/comment()[1] ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 8-8:	 Removing a comment from a typed column.

Not surprisingly, the XML DML expression is divided into two parts. The first part is the dec-
laration, and the second part contains the delete keyword and XQuery expression, with the
proper namespace references included. Listing 8-9 shows the results the SELECT statement
now returns.

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks>
 <ns:Book>Slaughterhouse-Five</ns:Book>
 </ns:FavoriteBooks>
</ns:Person>

Listing 8-9:	 The <FavoriteBooks> element without the comment.

Now let's look at how to remove an element from an XML instance. To do so, your XQuery
expression must identify the element that should be deleted, as shown in Listing 8-10.

UPDATE ClientInfo
SET Info_untyped.modify(
 'delete
 /People/Person[@id=1234]/FavoriteBooks/Book[1] ')
WHERE ClientID = 1;

SELECT Info_untyped.query(
 '/People/Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 8-10:	 Removing an element from an untyped column.

96

Level 8 – Deleting Data from an XML Instance

Notice that, as with the previous examples, the XML DML expression starts with the
delete keyword, following by the XQuery expression. As that expression shows, we're
removing the first instance of the <Book> child element within the <FavoriteBooks>
element. Listing 8-11 shows the results returned by the SELECT statement.

<Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 <FavoriteBooks />
</Person>

Listing 8-11:	 The <FavoriteBooks> element without the <Book> child element.

As you would expect, the <Book> element has been removed, and the <Favorite-
Books> element no longer contains child elements. If you want to remove the same
element from the typed column, you simply include the necessary namespace declaration
and references, as shown in Listing 8-12.

UPDATE ClientInfo
SET Info_typed.modify(
 'declare namespace ns="urn:ClientInfoNamespace";
 delete
 /ns:People/ns:Person[@id=1234]/ns:FavoriteBooks/ns:Book[1] ')
WHERE ClientID = 1;

SELECT Info_typed.query(
 'declare namespace ns="urn:ClientInfoNamespace";
 /ns:People/ns:Person[@id=1234]')
FROM ClientInfo
WHERE ClientID = 1;

Listing 8-12:	 Removing an element from a typed column.

Again, be sure to include the namespace alias and colon when referencing the elements
within your XQuery expression. The SELECT statement now returns the results shown in
Listing 8-13.

97

Level 8 – Deleting Data from an XML Instance

<ns:Person xmlns:ns="urn:ClientInfoNamespace" id="1234">
 <ns:FirstName>John</ns:FirstName>
 <ns:LastName>Doe</ns:LastName>
 <ns:FavoriteBooks />
</ns:Person>

Listing 8-13:	 The <FavoriteBooks> element without the <Book> child element.

As you saw with the untyped column, the <Book> element has been removed and the
<FavoriteBooks> element no longer contains any child elements.

Conclusion
This Level explained how to use the modify() method to delete data from typed and un-
typed XML instances. As the Level demonstrated, you must pass an XML DML expression
as an argument to the method. That expression must include the delete keyword, along
with an XQuery expression that defines the XML component to be deleted.

Up to this point, our discussions about XML have generally centered around the standard
ways XML is implemented in SQL Server, primarily as columns or variables configured with
the XML data type. However, XML can also play a role when working with such objects as
views, functions, defaults, computed columns, and check constraints. As we progress through
this book, you'll learn how to take what we've covered up till now and apply that information
to other objects in a SQL Server database.

98

Level 8 – Deleting Data from an XML Instance

Level 9 – Creating XML-based
Functions

In previous Levels, we looked at the methods available to the XML data type that let you view
and modify specific components of an XML instance. We also reviewed a number of ex-
amples that demonstrated different ways you can use the methods. However, those examples
were limited primarily to basic Transact-SQL queries. But you can also use the methods in
such database objects as user-defined functions, stored procedures, and views. In this Level,
we'll look at how to use XML methods within user-defined functions to return XML fragments
and values from your target XML instance.

When incorporating XML methods into your functions, you create them in much the same
way you would any function. If you're unfamiliar with how to create functions, refer to SQL
Server Books Online for details about the different function types and how to define them.
This Level is concerned primarily with the XML-related components.

The sections to follow include a number of examples that demonstrate how to use XML meth-
ods within your functions. If you plan to try out these examples, you should first run the code
shown in Listing 9-1. It creates the ClientDB database and the ClientInfo table within
that database. The code then inserts sample data into the table.

USE master;
GO

IF DB_ID('ClientDB') IS NOT NULL
DROP DATABASE ClientDB;
GO

CREATE DATABASE ClientDB;
GO

USE ClientDB;
GO

IF OBJECT_ID('ClientInfo') IS NOT NULL
DROP TABLE ClientInfo;
GO

CREATE TABLE ClientInfo

99

(
 ClientID INT PRIMARY KEY IDENTITY,
 Info XML
);

INSERT INTO ClientInfo (Info)
VALUES
(
'<People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="2468">
 <FirstName>John</FirstName>
 <LastName>Smith</LastName>
 </Person>
 <Person id="1357">
 <FirstName>Jane</FirstName>
 <LastName>Smith</LastName>
 </Person>
 </People>'
);

Listing 9-1:	 Setting up the initial test environment.

If you've worked through the previous Levels, you'll notice that the code shown in List-
ing 9-1 doesn't include a typed XML column in the ClientInfo table. For the purposes of
demonstrating how to use the XML methods within user-defined functions, this Level focuses
on how that is done, rather than distinguishing between typed and untyped XML objects. Just
know that if you're working with typed XML, you should follow the same processes you
saw in previous Levels to access the data. You must declare your namespace and provide the
proper namespace references in your element paths when referencing an XML instance in an
XML object. That said, let's get started on how to create functions that access XML data.

100

Level 9 – Creating XML-based Functions

Creating XML-based functions
Before we get into using an XML method within a user-defined function, let's first look at
a function that returns an XML instance. The code in Listing 9-2 creates the udfClient
function, which retrieves the XML instance from the Info column of the ClientInfo ta-
ble, based on the specified client ID. The function returns the instance as a single XML value.

IF OBJECT_ID('udfClient') IS NOT NULL
DROP FUNCTION udfClient;
GO

CREATE FUNCTION udfClient (@ClientID INT)
RETURNS XML
AS BEGIN
RETURN
(
 SELECT Info
 FROM ClientInfo
 WHERE ClientID = @ClientID
)
END;
GO

Listing 9-2:	 Creating a function that returns XML data.

The udfClient function is itself very straightforward. It includes a SELECT statement
whose WHERE clause limits the results to the row associated through the ClientID value,
as specified by the @ClientID parameter value passed into the function when calling it.
Notice that the RETURNS clause specifies the XML data type. That means the SELECT state-
ment must return a scalar value that conforms to that data type, which it does.

Once you've created the function, you can use a SELECT statement, such as the one shown in
Listing 9-3, to test that the function returns the results you expect. Note that you must specify
the schema name when calling a user-defined function, even if that function was created
within the dbo schema. You must also specify a value to pass in as an argument that identi-
fies the client ID (in this case, 1).

101

Level 9 – Creating XML-based Functions

SELECT dbo.udfClient(1);

Listing 9-3:	 Testing the udfClient user-defined function.

When you run the SELECT statement, it should return the entire XML instance that you
inserted into the table when you first set up your test environment. You can refer back to List-
ing 9-1 to verify that the statement returns the correct data.

Because the function returns an XML value, you can use the XML methods when calling the
function. For example, the SELECT statement in Listing 9-4 uses the query() method to
return the <FirstName> element for the person whose id attribute value is 1234.

SELECT dbo.udfClient(1).query(
 '/People/Person[@id=1234]/FirstName');

Listing 9-4:	 Using the query() method when calling your function.

Notice that when calling the udfClient function, you add a period after the function's
closing parenthesis, followed by the method name. You then pass in the necessary XQuery
expression as an argument to the method, just like you saw in previous Levels. Now the func-
tion returns only the value <FirstName>John</FirstName>.

If you want to return only an element's value, and not its tags, you can instead use the val-
ue() method. Just remember that, when calling this method, you must provide two argu-
ments: the XQuery expression and the data type of the returned value. For example, the
SELECT statement shown in Listing 9-5 retrieves the first name of the person with an id
attribute value of 5678, so the second argument to the method specifies the varchar(20)
data type.

SELECT dbo.udfClient(1).value(
 '(/People/Person[@id=5678]/FirstName)[1]',
 'varchar(20)') AS FirstName;

Listing 9-5:	 Using the value() method when calling your function.

Now the statement returns the value Jane. As you can see, because the udfClient func-
tion returns an XML value, you can use the XML methods as you would when specifying them
with columns or other XML objects.

102

Level 9 – Creating XML-based Functions

Of course, creating a user-defined function that returns an entire XML instance will probably
be useful only in rare circumstances because the complexity lies when you call the function,
not when you define it. Chances are, if you plan to use a function to access XML data, you'll
want to use one or more of the XML methods within the function so you can persist complex
queries to the database.

Let's look at an example that demonstrates how this works. Listing 9-6 shows the code used
to create the udfFullName function, which returns a list of full names for a specific client
in the ClientInfo table.

IF OBJECT_ID('udfFullName') IS NOT NULL
DROP FUNCTION udfFullName;
GO

CREATE FUNCTION udfFullName (@ClientID INT)
RETURNS TABLE
AS
RETURN
(
 SELECT Person.value(
 'concat(./FirstName[1], " ", ./LastName[1])',
 'varchar(50)') AS FullName
 FROM ClientInfo CROSS APPLY
 Info.nodes('/People/Person') AS People(Person)
 WHERE ClientID = @ClientID
);
GO

Listing 9-6:	 Using the value() and nodes() methods within your function.

Notice that the RETURNS clause in the CREATE FUNCTION statement specifies that the
results returned by the SELECT statement conform to the TABLE data type, which is a spe-
cial type used to store a tabular result set. That means our SELECT statement can return any
number of rows and columns, rather than only a scalar value.

The SELECT statement itself includes the value() and nodes() methods to retrieve a
list of names. The FROM clause uses the nodes() method to parse the XML instance. The
clause then uses the CROSS APPLY operator to join the results returned by the nodes()
method to the ClientInfo table.

103

Level 9 – Creating XML-based Functions

The SELECT clause contains the value() method, which retrieves the names from the
joined results, and the method's XQuery expression uses the concat() function to concat-
enate the values from the <FirstName> and <LastName> elements.

Once you've defined your function, you can then use a SELECT statement similar to the one
shown in Listing 9-7 to test that the function returns the expected results.

SELECT * FROM dbo.udfFullName(1);

Listing 9-7:	 Testing the udfFullName user-defined function.

Because the udfFullName function returns data as a table, you can use the function only
where a table expression is accepted which, in this case, is the FROM clause. Listing 9-8
shows the results returned by the SELECT statement.

FullName

John Doe
Jane Doe
John Smith
Jane Smith

Listing 9-8:	 Results returned by the udfFullName function.

As you can see, a function makes it easy to persist complex code to the database so you can
call it when you need it, which can be particularly handy when calling the function from
within other database objects. So let's look at how to do just that.

Using XML-based functions in computed
columns
A computed column is one in which an expression is used to generate the values for that
particular column. The expression can reference other columns within the table, including
XML columns.

104

Level 9 – Creating XML-based Functions

However, it's rare that you'll want to create a computed column based on an entire XML
instance, unless you simply plan to convert that column to another type. In most cases, you'll
probably want to use only a value or two from within the XML. The problem is, SQL Server
does not let you use XML methods in a computed column. The way around this is to create a
function that uses the necessary methods, and then call the function from within your com-
puted column expression.

For example, suppose we want to add a column to our ClientInfo table that calculates the
number of <Person> elements within the XML instance associated with a particular row.
We would start by first creating a function similar to the one shown in Listing9-9. The func-
tion uses the value() method and the XQuery count() function to return an INT value
that shows the number of <Person> elements.

IF OBJECT_ID('udfPersonCount') IS NOT NULL
DROP FUNCTION udfPersonCount;
GO

CREATE FUNCTION udfPersonCount (@ClientID INT)
RETURNS INT
AS BEGIN
RETURN
(
 SELECT Info.value('count(/People/Person)', 'int')
 FROM ClientInfo
 WHERE ClientID = @ClientID
)
END;
GO

Listing 9-9:	 Creating a function that returns the number of people within an
XML document.

As you can see, when you call the function, you pass in the client ID. The function then
returns the element count for the row associated with that ID.

You can test that the function works by using a SELECT statement, as shown in Listing 9-10.
In this case, the function should return a scalar value of 4.

SELECT dbo.udfPersonCount(1) AS PersonCount;

Listing 9-10:	 Testing the udfPersonCount user-defined function.

105

Level 9 – Creating XML-based Functions

Now let's update the ClientInfo table to include the computed column. Listing 9-11
shows an ALTER TABLE statement that adds the PersonCount column to the table.
Notice that the ADD clause calls the udfPersonCount function and passes in the
ClientID column as an argument.

ALTER TABLE ClientInfo
ADD PersonCount AS dbo.udfPersonCount(ClientID);
GO

Listing 9-11:	 Using the udfPersonCount function to create a calculated column.

To verify your computed column, you need only retrieve the PersonCount column from
the ClientInfo table, as shown in Listing 9-12. In this case, I've included a WHERE clause
that limits the results to the row with a client ID of 1.

SELECT PersonCount FROM ClientInfo
WHERE ClientID = 1;

Listing 9-12:	 Verifying the data in the PersonCount calculated column.

As to be expected, the SELECT statement returns the value 4. If the table had included ad-
ditional rows, and you retrieved the PersonCount data from one of those rows, the value
would be specific to the number of <Person> elements in that row. Now let's look at how
to incorporate the function in a check constraint.

Using XML-based functions in check
constraints
As with computed columns, you cannot use the XML methods within a check constraint
expression, but you can include a function in the expression, and that function can include
the methods.

For example, suppose you want to ensure that a row can be added to the ClientInfo table
only if the XML document contains more than one instance of the <People> element. You
can create a check constraint that uses the udfPersonCount function in the constraint's
expression, as shown in Listing 9-13.

106

Level 9 – Creating XML-based Functions

ALTER TABLE ClientInfo
WITH NOCHECK ADD CONSTRAINT ck_count
 CHECK (dbo.udfPersonCount(ClientID) > 1);

Listing 9-13:	 Using the udfPersonCount function in a check constraint.

As you can see, the ALTER TABLE statement adds the ck_count check constraint. The
constraint's expression compares the output from the udfPersonCount function to the
value 1. For the expression to evaluate to true, the XML document must contain more than
one instance of the <People> element.

Once we've added the check constraint to our table, we can test it by trying to add an XML
document that contains only one <Person> element, as shown in Figure 9-14.

INSERT INTO ClientInfo (Info)
VALUES
(
 '<People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>'
);

Listing 9-14:	 Inserting a single <Person> instance into the Info column.

Not surprisingly, this statement returns an error message (shown in Listing 9-15) because the
INSERT statement causes the check constraint expression to evaluate to false. So the row
cannot be inserted into the table.

The INSERT statement conflicted with the CHECK constraint "ck_
count". The conflict occurred in database "ClientDB", table "dbo.
ClientInfo", column 'ClientID'.
The statement has been terminated.

Listing 9-15:	 Error message returned by SQL Server.

Now let's try to add an XML document with two <People> elements. Listing 9-16 shows
the XML document with the additional element.

107

Level 9 – Creating XML-based Functions

INSERT INTO ClientInfo (Info)
VALUES
(
 '<People>
 <Person id="1234">
 <FirstName>John</FirstName>
 <LastName>Doe</LastName>
 </Person>
 <Person id="5678">
 <FirstName>Jane</FirstName>
 <LastName>Doe</LastName>
 </Person>
 </People>'
);
-- 1 row inserted

Listing 9-16:	 Inserting two <Person> instances into the Info column.

This time you should receive a message saying that one row has been inserted into the table.
You can confirm this by running the SELECT statement in Figure 9-17.

SELECT * FROM ClientInfo;

Listing 9-17:	 Verifying that a second row as been added to the ClientInfo table.

As to be expected, the SELECT statement returns two rows, the original row and the new
row. The original row had four instances of the <People> element, and the new one has
two instances. Therefore, the calculated column PersonCount should contain the values
4 and 2, respectively.

Conclusion
Being able to use the XML methods within your functions can be a handy tool, regardless of
how you plan to use those functions. Yet, as this Level has demonstrated, such functions are
particularly useful when implementing calculated columns or check constraints because nei-
ther supports the direct use of the XML methods. However, other objects do permit their use.
In a later level, we'll cover how to incorporate the methods into views and stored procedures.

108

Level 9 – Creating XML-based Functions

109

Level 9 – Creating XML-based Functions

Many of the principles we covered in this Level will apply to the next one, but that Level
will help to round out our discussion on the XML methods, and will give you a more complete
picture of the various ways you can access data from an XML instance. In the meantime,
for additional information on the topics we discussed in this Level, be sure to refer to
SQL Server Books Online.

110

Level 10 – Converting XML Data
Previous Levels of this book covered different ways to work with XML in SQL Server, with
much of the focus on the XML methods used to access and update components within an
XML instance. One of those methods, value(), lets you return a specific element or at-
tribute value as a T-SQL data type such as VARCHAR. For the most part, this represented the
only discussion we've had about converting XML data. However, there might be times when
you want to convert an entire XML instance or fragment to a character data type or convert a
string value to XML.

In this Level, we look at how to convert string values to XML and how to convert XML
to character types. We'll be using variables to demonstrate how these conversions work, so
there's no setup required to try out the examples, other than to have access to a SQL Server
instance. I wrote the examples on a local instance of SQL Server 2012, but you are by no
means limited to this environment. In addition, the methods shown here to convert data can
easily be applied to XML columns. But note that you can convert XML data to and from char-
acter types only, such as CHAR or VARCHAR. You cannot, for example, convert XML directly
to the DATETIME type.

Converting string values to XML data
When converting a string value to XML, you can do so implicitly or explicitly, whether
you're using a literal value or accessing the value through an object configured with a charac-
ter type. One of the most basic examples of an implicit conversion is to assign a literal string
value to an XML object, as I do in Listing 10-1.

DECLARE @xmlPerson XML;
SET @xmlPerson = '<People><Person>John Doe</Person></People>';
SELECT @xmlPerson;

Listing 10-1:	 Implicitly converting a string value to XML.

First, I declare the @xmlPerson variable with the XML data type. I then assign the <Peo-
ple> element and its contents to the variable. The element in this case is simply a string val-
ue that I assign to the variable. SQL Server automatically converts the literal value to XML.
When I then use a SELECT statement to retrieve the value from the variable, it's returned as
an XML fragment, as shown in Listing 10-2.

111

Level 10 – Converting XML Data

<People><Person>John Doe</Person></People>

Listing 10-2:	 The XML fragment returned by the T-SQL query.

As you can see, an implicit conversion is fairly straightforward, and it's just as easy to con-
vert the value in an XML object. For instance, in the example shown in Listing 10-3, I convert
the value assigned to a variable configured with the NVARCHAR data type.

DECLARE @strPerson NVARCHAR(100);
DECLARE @xmlPerson XML;
SET @strPerson = '<People><Person>John Doe</Person></People>';
SET @xmlPerson = @strPerson;
SELECT @xmlPerson;

Listing 10-3:	 Implicitly converting a character type to XML.

First, I declare the @strPerson variable with the NVARCHAR type, and then I declare the
@xmlPerson variable with the XML type. Next, I assign the <People> element and its
contents (defined as a string literal) to the @strPerson variable. Then I simply assign the
@strPerson value to @xmlPerson. Once again, SQL Server automatically converts the
data from the NVARCHAR type to the XML type. The SELECT statement returns the same
results as the SELECT statement in the previous example. (Refer back to Listing 10-2.)

We could just as easily have assigned a different character type to the @strPerson vari-
able. For instance, the example shown in Listing 10-4 assigns the VARCHAR(MAX) data type
to the variable.

DECLARE @strPerson VARCHAR(MAX);
DECLARE @xmlPerson XML;
SET @strPerson = '<People><Person>John Doe</Person></People>';
SET @xmlPerson = @strPerson;
SELECT @xmlPerson;

Listing 10-4:	 Implicitly converting a character type to XML.

Once again, SQL Server automatically converts the character value to XML, and the SELECT
statement returns the same results as we saw in the previous examples.

112

Level 10 – Converting XML Data

If you plan to port your SQL scripts to another database system, you can't assume that the
system will support implicit conversions in the same way as SQL Server. In such circum-
stances, you should use the CAST function to explicitly convert your string values to XML.
The CAST function conforms to ANSI specifications and consequently is supported by most
database systems.

In the example shown in Listing 10-5, I use the CAST function to convert the @strPerson
value to XML before assigning the value to the @xmlPerson variable.

DECLARE @strPerson VARCHAR(MAX);
DECLARE @xmlPerson XML;
SET @strPerson = '<People><Person>John Doe</Person></People>';
SET @xmlPerson = CAST(@strPerson AS XML);
SELECT @xmlPerson;

Listing 10-5:	 Using the CAST function to explicitly convert a character type.

As you can see, the CAST function takes only two arguments, separated by the AS keyword.
The first is the source value, in this case, the @strPerson variable, and the second argu-
ment is the target data type—XML. Once again, the SELECT statement returns the same
XML element as in the previous examples.

We can easily achieve the same results using the CONVERT function, but we need to structure
the arguments differently, as shown in Listing 10-6.

DECLARE @strPerson VARCHAR(MAX);
DECLARE @xmlPerson XML;
SET @strPerson = '<People><Person>John Doe</Person></People>';
SET @xmlPerson = CONVERT(XML, @strPerson);
SELECT @xmlPerson;

Listing 10-6:	 Using the CONVERT function to explicitly convert a character type.

In this case, we first specify the target data type (XML) and then the source value
(@strPerson), separated by a comma. However, the CONVERT function does not
port to other systems; it is specific to T-SQL in SQL Server. The only reason you would
use the CONVERT function is to take advantage of additional options available to the
function not available to CAST.

113

Level 10 – Converting XML Data

Let's look at a couple of examples to better understand how this works. In Listing 10-7,
I start by declaring the two variables and assigning a string value to @strPerson, as I
did in the previous examples. But notice that this time I've add whitespace and line breaks
to the string value.

DECLARE @strPerson VARCHAR(MAX);
DECLARE @xmlPerson XML;
SET @strPerson = '
<People>
 <Person>John Doe</Person>
</People>';
SET @xmlPerson = CONVERT(XML, @strPerson);
SELECT @xmlPerson;

Listing 10-7:	 Trying to preserve whitespace and line breaks when converting string data
to XML.

The whitespace and line breaks have no impact on the XML itself. In fact, when SQL Server
converts the string to the XML type, it removes the whitespace and line breaks. Consequently,
the SELECT statement returns the same results as the previous examples, as shown in
Listing 10-8.

<People><Person>John Doe</Person></People>

Listing 10-8:	 The XML fragment returned without the whitespace and line breaks.

If we want to preserve the whitespace and line breaks, we need to add a third argument to
the CONVERT function. The SQL Server documentation refers to this as the style argument,
which is an integer that specifies how to translate the value returned by the expression in the
second argument. The styles available are specific to the data type specified in the first argu-
ment. For the XML type, we have only a few options available. Two of those are 0 and 1. The
0 option, which is the default, ignores whitespace and line breaks. The 1 option preserves
them. Listing 10-9 shows the CONVERT function when we include 1 as the third argument.

114

Level 10 – Converting XML Data

DECLARE @strPerson VARCHAR(MAX);
DECLARE @xmlPerson XML;
SET @strPerson = '
<People>
 <Person>John Doe</Person>
</People>';
SET @xmlPerson = CONVERT(XML, @strPerson, 1);
SELECT @xmlPerson;

Listing 10-9:	 Preserving whitespace and line breaks when converting string data to XML.

As you can see, I've simply added a comma and the 1 argument to the CONVERT function.
Everything else in the example is the same as the preceding one. However, the SELECT
statement now returns the XML with the whitespace and line breaks preserved, as shown in
Listing 10-10.

<People>
 <Person>John Doe</Person>
</People>

Listing 10-10:	The XML fragment returned with the whitespace and line breaks.

Preserving the whitespace is particularly handy when your XML contains more elements
and is subsequently more difficult to read. For instance, Listing 10-11 includes an additional
<Person> element in the string value.

DECLARE @strPerson VARCHAR(MAX);
DECLARE @xmlPerson XML;
SET @strPerson = '
<People>
 <Person>John Doe</Person>
 <Person>Jane Doe</Person>
</People>';
SET @xmlPerson = CONVERT(XML, @strPerson, 1);
SELECT @xmlPerson;

Listing 10-11:	Preserving whitespace and line breaks when converting string data to XML.

Once again, I've used the CONVERT function with the third argument set to 1. As
Listing 10-12 shows, the results have preserved the additional whitespace and line break.

115

Level 10 – Converting XML Data

<People>
 <Person>John Doe</Person>
 <Person>Jane Doe</Person>
</People>

Listing 10-12:	The XML fragment returned with an additional element.

Keep in mind, however, as handy as the CONVERT function is, in terms of letting you specify
how data is converted, the fact that the function cannot be ported to other systems is an
important one. If the possibility exists that you will one day need to run your T-SQL scripts
against a system other than SQL Server, then you should use the CAST function, and avoid
both implicit conversions and the CONVERT function.

Converting XML values to string data
At times, you might find it handy to convert XML data to string data. For example, you might
decide you don't need to use the XML data type to store your data, and want to switch over to
one of the character data types. However, SQL Server does not support implicit conversions
from the XML type to a character type. To convert your data in this direction, you must use
the CAST or CONVERT function.

If you do try to implicitly convert XML data, you will receive an error. For instance, in List-
ing 10-13, I define the same two variables you saw in earlier examples. Only, this time I as-
sign the string value (the <People> element) to the @xmlPerson variable and then assign
that variable to the @strPerson variable.

DECLARE @xmlPerson XML;
DECLARE @strPerson VARCHAR(MAX);
SET @xmlPerson = '<People><Person>Jane Doe</Person></People>';
SET @strPerson = @xmlPerson;
SELECT @strPerson;

Listing 10-13:	Trying to implicitly convert XML data to a character type.

When I try to run these statements, SQL Server returns the error shown in Listing 10-14.
Notice that the error is at Line 4, which is where I try to implicitly convert the XML value to a
VARCHAR(MAX) value.

116

Level 10 – Converting XML Data

Msg 257, Level 16, State 3, Line 4
Implicit conversion from data type xml to varchar(max) is not
allowed. Use the CONVERT function to run this query.

Listing 10-14:	The error message returned when trying to implicitly convert
the XML fragment.

This, of course, is an easy fix. Simply use the CAST function to implicitly convert the data, as
shown in Listing 10-15.

DECLARE @xmlPerson XML;
DECLARE @strPerson VARCHAR(MAX);
SET @xmlPerson = '<People><Person>Jane Doe</Person></People>';
SET @strPerson = CAST(@xmlPerson AS VARCHAR(MAX));
SELECT @strPerson;

Listing 10-15:	Using the CAST function to explicitly convert XML data.

Notice that I specify the CAST function, with the @xmlPerson variable as the first argu-
ment and the VARCHAR(MAX) data type as the second argument. As expected, the conver-
sion now works without a hitch, and the SELECT statement returns the expected results, as
shown in Listing 10-16.

<People><Person>Jane Doe</Person></People>

Listing 10-16:	The XML fragment returned by the query.

I can also use the CONVERT function to achieve the same results. Listing 10-17 uses the
function with the same two arguments used in the previous example for the CAST function.

DECLARE @xmlPerson XML;
DECLARE @strPerson VARCHAR(MAX);
SET @xmlPerson = '<People><Person>Jane Doe</Person></People>';
SET @strPerson = CONVERT(VARCHAR(MAX), @xmlPerson);
SELECT @strPerson;

Listing 10-17:	Using the CONVERT function to explicitly convert XML data.

117

Level 10 – Converting XML Data

As we saw when converting string data to XML data, there might be times when we want
to preserve the whitespace and line breaks. The obvious solution is to simply add the third
argument to the CONVERT function. So let's look at what happens when we do. In Listing 10-
18, my string value now includes whitespace and line breaks, and my CONVERT function
includes 1 as the third argument.

DECLARE @xmlPerson XML;
DECLARE @strPerson VARCHAR(MAX);
SET @xmlPerson = '
<People>
 <Person>Jane Doe</Person>
</People>';
SET @strPerson = CONVERT(VARCHAR(MAX), @xmlPerson, 1);
SELECT @strPerson;

Listing 10-18:	Trying to preserve whitespace and line breaks when converting XML data.

Unfortunately, this solution will not preserve the whitespace or line breaks, and our SELECT
statement again returns the string as a single line, as shown in Listing 10-19.

<People><Person>Jane Doe</Person></People>

Listing 10-19:	The XML fragment returned without the whitespace and line breaks.

There's a reason for this. Earlier in this Level, in Listing 10-1, you saw how SQL Server
implicitly converts a string literal to XML when you assign the value to an XML object.
When converting the data, SQL Server removes the whitespace and line breaks. As a
result, you must explicitly convert the data when first assigning it to your object, as
shown in Listing 10-20.

DECLARE @xmlPerson XML;
DECLARE @strPerson VARCHAR(MAX);
SET @xmlPerson = CONVERT(XML, '
<People>
 <Person>Jane Doe</Person>
</People>', 1);
SET @strPerson = CONVERT(VARCHAR(MAX), @xmlPerson, 1);
SELECT @strPerson;

Listing 10-20:	Preserving whitespace and line breaks when preserving XML data.

118

Level 10 – Converting XML Data

As you can see, I've used the CONVERT function when assigning the data to the @xmlPer-
son variable and then again when assigning that variable value to the @strPerson vari-
able. As Listing 10-21 shows, the SELECT statement now returns the expected result.

<People>
 <Person>Jane Doe</Person>
</People>

Listing 10-21:	The XML fragment returned with the whitespace and line breaks.

Of course, it makes little sense to explicitly convert a string value to XML and then explic-
itly convert it back to its original value. But this example helps to demonstrate what happens
when converting XML data, so if you get results you don't expect, you might have some
understanding of what's going on. Also keep in mind that, when viewing an XML document,
the application you use might automatically display the XML in a readable format, even
though the XML itself doesn't contain any extra whitespace or line breaks. Yet if you were to
view the same XML document as a text file, you might see only one line of text.

Conclusion
As this Level has demonstrated, converting XML data to a string value is a relatively easy
process when using the CAST or CONVERT function. And converting a string value to XML
is just as easy, if not easier. You can use either one of the two functions, or you can let SQL
Server implicitly convert the value. Even if you were to use an XML method to retrieve only
 a fragment from an XML document, you can still convert the output. For example, you
 might use the query() method to return an XML element and then convert that element
to a string. The key is in understanding how XML data is converted. Once you have that
understanding, you'll be better able to work with the XML documents in your database.

	Level 1 – Introduction to XML
	Level 2 – The XML Data Type
	Level 3 – Working with Typed XML
	Level 4 – Querying XML Data
	Level 5 – The XML exist() and nodes() Methods
	Level 6 – Inserting Data into an XML Instance
	Level 7 – Updating Data in an XML Instance
	Level 8 – Deleting Data from an XML Instance
	Level 9 – Creating XML-based Functions
	Level 10 – Converting XML Data

