Preface to the Second Edition
Preface
Audience
Teaching strategy
How to use this book
Installing the rethinking R package
Acknowledgments
Chapter 1. The Golem of Prague
Statistical golems
Statistical rethinking
Tools for golem engineering
Summary
Chapter 2. Small Worlds and Large Worlds
The garden of forking data
Building a model
Components of the model
Making the model go
Summary
Practice
Chapter 3. Sampling the Imaginary
Sampling from a grid-appromate posterior
Sampling to summarize
Sampling to simulate prediction
Summary
Practice
Chapter 4. Geocentric Models
Why normal distributions are normal
A language for describing models
Gaussian model of height
Linear prediction
Curves from lines
Summary
Practice
Chapter 5. The Many Variables & The Spurious Waffles
Spurious association
Masked relationship
Categorical variables
Summary
Practice
Chapter 6. The Haunted DAG & The Causal Terror
Multicollinearity
Post-treatment bias
Collider bias
Confronting confounding
Summary
Practice
Chapter 7. Ulysses’ Compass
The problem with parameters
Entropy and accuracy
Golem Taming: Regularization
Predicting predictive accuracy
Model comparison
Summary
Practice
Chapter 8. Conditional Manatees
Building an interaction
Symmetry of interactions
Continuous interactions
Summary
Practice
Chapter 9. Markov Chain Monte Carlo
Good King Markov and His island kingdom
Metropolis Algorithms
Hamiltonian Monte Carlo
Easy HMC: ulam
Care and feeding of your Markov chain
Summary
Practice
Chapter 10. Big Entropy and the Generalized Linear Model
Mamum entropy
Generalized linear models
Mamum entropy priors
Summary
Chapter 11. God Spiked the Integers
Binomial regression
Poisson regression
Multinomial and categorical models
Summary
Practice
Chapter 12. Monsters and Mixtures
Over-dispersed counts
Zero-inflated outcomes
Ordered categorical outcomes
Ordered categorical predictors
Summary
Practice
Chapter 13. Models With Memory
Example: Multilevel tadpoles
Varying effects and the underfitting/overfitting trade-off
More than one type of cluster
Divergent transitions and non-centered priors
Multilevel posterior predictions
Summary
Practice
Chapter 14. Adventures in Covariance
Varying slopes by construction
Advanced varying slopes
Instruments and causal designs
Social relations as correlated varying effects
Continuous categories and the Gaussian process
Summary
Practice
Chapter 15. Missing Data and Other Opportunities
Measurement error
Missing data
Categorical errors and discrete absences
Summary
Practice
Chapter 16. Generalized Linear Madness
Geometric people
Hidden minds and observed behavior
Ordinary differential nut cracking
Population dynamics
Summary
Practice
Chapter 17. Horoscopes
Endnotes
· · · · · · (
收起)
3 有用 Amadeus 2024-03-18 03:09:10
从文化演化来讲,个体永远不够聪明,聪明的是文化的迭代、传播和利用。贝叶斯和原则性贝叶斯工作流就是这样一种文化工具。试想做频率学派linear mixed model的例子,在R中用lme4包只需一行代码就可以对其进行估计。而在Stan中,你要设置先验分布,设置协方差结构(e.g., 高斯过程),做prior/posterior predictive check,写下数十行代码。因此,不少认知科学家... 从文化演化来讲,个体永远不够聪明,聪明的是文化的迭代、传播和利用。贝叶斯和原则性贝叶斯工作流就是这样一种文化工具。试想做频率学派linear mixed model的例子,在R中用lme4包只需一行代码就可以对其进行估计。而在Stan中,你要设置先验分布,设置协方差结构(e.g., 高斯过程),做prior/posterior predictive check,写下数十行代码。因此,不少认知科学家断言,lme4不是给初学者用的。看完本书,再看许多心理学论文,会发现大量存疑的模型设置,比如基于变量拆分数据拟合多个回归(强行假定第一层噪声有组间差异),为离散变量设置dummy variable(强行假定一个类的参数不确定性更大并增加不可识别参数),默认随机效应独立(可能增加过拟合风险)等等 (展开)
2 有用 AhaEureka 2022-08-25 14:04:21
极好,第二版比第一版更加清晰,也紧跟时尚前沿。
1 有用 后稷 2023-03-11 16:16:04 河南
唉咋说呢……翻看完之后,感觉确实是有点东西,但是同时又确实感觉“文笔生动简练,却又读不懂”。实在是不适合自学。
1 有用 几只番茄 2023-08-22 12:15:15 北京
二刷了 油管上有配套讲座 真的觉得很啰嗦
3 有用 [已注销] 2020-04-01 00:07:43
看了电子版,还是决定花100美元买一本实体书。