出版社: Viking
副标题: Why Brains Learn Better Than Any Machine . . . for Now
出版年: 2020-1-28
页数: 352
定价: USD 15.69
装帧: Hardcover
ISBN: 9780525559887
内容简介 · · · · · ·
An illuminating dive into the latest science on our brain's remarkable learning abilities and the potential of the machines we program to imitate them
The human brain is an extraordinary machine. Its ability to process information and adapt to circumstances by reprogramming itself is unparalleled and it remains the best source of inspiration for recent developments in artificia...
An illuminating dive into the latest science on our brain's remarkable learning abilities and the potential of the machines we program to imitate them
The human brain is an extraordinary machine. Its ability to process information and adapt to circumstances by reprogramming itself is unparalleled and it remains the best source of inspiration for recent developments in artificial intelligence. In How We Learn, Stanislas Dehaene decodes the brain's biological mechanisms, delving into the neuronal, synaptic, and molecular processes taking place. He explains why youth is such a sensitive period, during which brain plasticity is maximal, but assures us that our abilities continue into adulthood and that we can enhance our learning and memory at any age. We can all learn to learn by taking maximal advantage of the four pillars of the brain's learning algorithm: attention, active engagement, error feedback, and consolidation.
The exciting advancements in artificial intelligence of the last twenty years reveal just as much about our remarkable abilities as they do about the potential of machines. How We Learn finds the boundary of computer science, neurobiology, and cognitive psychology to explain how learning really works and how to make the best use of the brain's learning algorithms, in our schools and universities, as well as in everyday life.
How We Learn的创作者
· · · · · ·
-
斯坦尼斯拉斯·迪昂 作者
作者简介 · · · · · ·
Stanislas Dehaene is a French psychologist and cognitive neuroscientist. He is currently heading the Cognitive NeuroImaging Unit within the NeuroSpin building of the Commissariat A l'Energie Atomique in Saclay near Paris, France's most advanced brain imaging center. He is also a professor at College de France in Paris, where he holds the newly created chair of Experimental Cogn...
Stanislas Dehaene is a French psychologist and cognitive neuroscientist. He is currently heading the Cognitive NeuroImaging Unit within the NeuroSpin building of the Commissariat A l'Energie Atomique in Saclay near Paris, France's most advanced brain imaging center. He is also a professor at College de France in Paris, where he holds the newly created chair of Experimental Cognitive Psychology. In 2005, he was elected as the youngest member of the French Academy of Sciences.
Stanislas Dehaene's interests concern the brain mechanisms of specifically human cognitive functions such as language, calculation, and conscious reasoning. His research relies on a variety of experimental methods, including mental chronometry in normal subjects, cognitive analyses of brain-lesioned patients, and brain-imaging studies with positron emission tomography, functional magnetic resonance imaging, and high-density recordings of event-related potentials. Formal models of minimal neuronal networks are also devised and simulated in an attempt to throw some links between molecular, physiological, imaging, and behavioral data.
Stanislas Dehaene's main scientific contributions include the study of the organization of the cerebral system for number processing. Using converging evidence from PET, ERPs, fMRI, and brain lesions, Stanislas Dehaene demonstrated the central role played by a region of the intraparietal sulcus in understanding quantities and arithmetic (the "number sense"). He was also the first to demonstrate that subliminal presentations of words can yield detectable cortical activations in fMRI, and has used these data to support an original theory of conscious and nonconscious processing in the human brain. With neurologist Laurent Cohen, he studied the neural networks of reading and demonstrated the crucial role of the left occipito-temporal region in word recognition (the "visual word form area").
Stanislas Dehaene is the author of over 190 scientific publications in major international journals. He has received several international prizes including the McDonnell Centennial Fellowship, the Louis D prize of the French Academy of Sciences (with D. Lebihan), and the Heineken prize in Cognitive Science from the Royal Academy of the Netherlands. He has published an acclaimed book The number sense, which has been translated in eight languages, and is publishing a new book Reading in the brain, to appear in November 2009. He has also edited three books on brain imaging, consciousness, and brain evolution, and has authored two general-audience documentaries on the human brain.
喜欢读"How We Learn"的人也喜欢的电子书 · · · · · ·
喜欢读"How We Learn"的人也喜欢 · · · · · ·
How We Learn的书评 · · · · · · ( 全部 20 条 )
了解了人类大脑的学习的底层奥秘,就会明白我们不会被AI所替代
学习就是通过对世界的认知和反馈来认知自己和改变自己
这篇书评可能有关键情节透露
这是一本强烈推荐且值得反复阅读和实践的书籍。本书的英文名是《HOW WE LEARN》比中文名《精准学习》更能表明本书的内容广泛的探讨了人脑最伟大的才能———学习能力的底层原理和核心机制,包括局限性以及最新的科学实践和对我们的启示:学会如何学习。“当代认知科学通过系统... (展开)《精准学习》:四大核心支柱帮你快速提升学习能力
这篇书评可能有关键情节透露
很多人觉得自己看书很慢,常常好奇为什么有的人看书就很快。 是他们天生就对文字敏感吗?不是,我们对文字的认识是一样的,抛开生僻字不说,每个字我们都认识。 可为什么就是看书很慢呢?排除了认字的差别,会不会是阅读量的差别?这个答案也不一定。 就比如看小说,同是看一样... (展开)强烈推荐给终身学习者和家长
《精准学习》读书笔记
这篇书评可能有关键情节透露
2023 年的第 28 本书。 迄今为止脑科学领域里读过的最好也是最与时俱进的一本书。相比于其他以介绍脑科学发展史、大脑基本结构和功能的科普入门书,本书以“学习”为主线,深入浅出地介绍了人脑的运作机理,并且给出了不少实用性很强的建议。最重要的是,可以将本书对于脑功能... (展开)> 更多书评 20篇
论坛 · · · · · ·
在这本书的论坛里发言这本书的其他版本 · · · · · · ( 全部3 )
-
浙江教育出版社 (2023)8.4分 447人读过
-
遠流 (2020)暂无评分 20人读过
以下书单推荐 · · · · · · ( 全部 )
谁读这本书? · · · · · ·
二手市场
· · · · · ·
- 在豆瓣转让 有341人想读,手里有一本闲着?
订阅关于How We Learn的评论:
feed: rss 2.0










2 有用 untamedheart 2021-07-01 09:43:20
买了一年了才看,一方面很好看,很多新启发,尤其是婴儿出生时已经具备支持哪些能力的神经结构和后天plasticity 的局限性,包括学习机制,有啥是纠错机制,对理解学习有更深的理解。但另一方面,也能看出学科角度来来的特性,当然这是所有学科都会有的,比如说用电子游戏训练注意力,神经科学可能就专注是的,是训练了专注力,但以什么为代价,其他方式也可以,并不会综合考虑,所以就只是一个学科角度的声音。总体不错... 买了一年了才看,一方面很好看,很多新启发,尤其是婴儿出生时已经具备支持哪些能力的神经结构和后天plasticity 的局限性,包括学习机制,有啥是纠错机制,对理解学习有更深的理解。但另一方面,也能看出学科角度来来的特性,当然这是所有学科都会有的,比如说用电子游戏训练注意力,神经科学可能就专注是的,是训练了专注力,但以什么为代价,其他方式也可以,并不会综合考虑,所以就只是一个学科角度的声音。总体不错,让我想接着看这个话题。 (展开)
0 有用 hx 2022-11-18 09:28:57 江苏
非常好 早教还是很有必要的但是方法药对
1 有用 治感冒不吃药 2020-12-12 14:59:36
男神真的是精力充沛令人望其项背,科研版图几乎涵盖到认知神经科学的每个领域,还有余力每隔几年就出一本大部头。让人时常感叹做科研大佬也是要拼体力的。这本着重讲人类神经系统在婴儿和胎儿时期的发展,引用的真的是最新最新的研究成果,讨论先天和后天的分工,顺便论证了一下人类的哪些学习机制优于机器(这一块儿倒没什么新意)。终章的学习方法推荐,其实也没有新东西,可贵在有越来越多认神的证据来支持这些学习方法。不过讲... 男神真的是精力充沛令人望其项背,科研版图几乎涵盖到认知神经科学的每个领域,还有余力每隔几年就出一本大部头。让人时常感叹做科研大佬也是要拼体力的。这本着重讲人类神经系统在婴儿和胎儿时期的发展,引用的真的是最新最新的研究成果,讨论先天和后天的分工,顺便论证了一下人类的哪些学习机制优于机器(这一块儿倒没什么新意)。终章的学习方法推荐,其实也没有新东西,可贵在有越来越多认神的证据来支持这些学习方法。不过讲真,这本不太科普啊,对神经和计算零背景的读者,可能有点艰难。好期待来年跟他合作做研究哦嗷嗷嗷! (展开)
0 有用 oreo 2025-05-21 15:43:32 北京
202505:科学+实践,受益匪浅
0 有用 sunshangyi 2025-12-14 19:57:38 天津
牛逼闪闪的一本书。迄今读的学习主题类最好的一本书了,远超芭芭拉的《学习之道》,也比豆瓣TOP1的《为什么学生不喜欢上学》也好