【负荷预测】基于自适应灰狼算法(IGWO)改进LSSVM实现负荷预测附Matlab代码

简介: 【负荷预测】基于自适应灰狼算法(IGWO)改进LSSVM实现负荷预测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

随着现代智能交通系统的发展,准确的交通流量预测,尤其是短时交通流量的预测,对实时交通控制的重要性日益凸显.为了解决交通流量数据强非线性对预测精度的影响,本文基于最小二乘支持向量机研究交通流量预测方法.提出了一种灰狼优化算法优化LSSVM的惩罚因子γ和核函数参数σ,实现对短时交通流的精准预测.实验结果表明,GWO优化LSSVM的泛化性能和鲁棒性优于其他同类方法,可以实现交通流的精准预测.

⛄ 部分代码

%___________________________________________________________________%

%  Grey Wolf Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: [email protected]                           %

%                 [email protected]             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%


% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems


Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems


Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);


Convergence_curve=zeros(1,Max_iter);


l=0;% Loop counter


% Main loop

while l<Max_iter

   for i=1:size(Positions,1)  

       

      % Return back the search agents that go beyond the boundaries of the search space

%         Flag4ub=Positions(i,:)>ub;

%         Flag4lb=Positions(i,:)<lb;

%         Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;              

       

       % Calculate objective function for each search agent

       fitness=fobj(Positions(i,:));

       

       % Update Alpha, Beta, and Delta

       if fitness<Alpha_score

           Alpha_score=fitness; % Update alpha

           Alpha_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness<Beta_score

           Beta_score=fitness; % Update beta

           Beta_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score

           Delta_score=fitness; % Update delta

           Delta_pos=Positions(i,:);

       end

   end

   

   

   a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0


   % Update the Position of search agents including omegas

   for i=1:size(Positions,1)

       for j=1:size(Positions,2)    

                     

           r1=rand(); % r1 is a random number in [0,1]

           r2=rand(); % r2 is a random number in [0,1]

           

           A1=2*a*r1-a; % Equation (3.3)

           C1=2*r2; % Equation (3.4)

           

           D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

           X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                     

           r1=rand();

           r2=rand();

           

           A2=2*a*r1-a; % Equation (3.3)

           C2=2*r2; % Equation (3.4)

           

           D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

           X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2      

           

           r1=rand();

           r2=rand();

           

           A3=2*a*r1-a; % Equation (3.3)

           C3=2*r2; % Equation (3.4)

           

           D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

           X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3            

           

           Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

%            

           if Positions(i,j)>ub

               Positions(i,j)=ub;

           elseif Positions(i,j)<lb

               Positions(i,j)=lb;

           end

       end

   end

   l=l+1;    

   Convergence_curve(l)=Alpha_score;

end

⛄ 运行结果

⛄ 参考文献

[1]伍韵鸣,孙博文,成荣红,等。基于灰狼算法的LSSVM模型预测凝析气藏露点压力研究[J]. 西安石油大学学报:自然科学版, 2020, 35(2):7.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
316 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
148 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
121 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
191 8
|
2月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
193 8
|
2月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
111 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
197 8
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
224 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
232 3
|
3月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
178 6

热门文章

最新文章