Pytorch基于迁移学习的Alexnet卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕Alexnet神经网络的注释 两个基本一样 只是这个网络是迁移过来的

简介: Pytorch基于迁移学习的Alexnet卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕Alexnet神经网络的注释 两个基本一样 只是这个网络是迁移过来的
import torch
import torchvision
import torchvision.models
from PIL import Image
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
toPIL = transforms.ToPILImage()  # 将图像数据转换为PIL格式
trans = transforms.Compose([transforms.Resize((120, 120)),  # 将图像统一调整为120*120大小
                            transforms.ToTensor()])  # 将图像数据转换为张量
train_data = torchvision.datasets.CIFAR10(root="./data", train=True, download=True,  # 导入CIFAR10数据集的训练集
                                          transform=trans)
traindata = DataLoader(dataset=train_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行训练
test_data = torchvision.datasets.CIFAR10(root="./data", train=False, download=False,  # 导入CIFAR10数据集的测试集
                                         transform=trans)
train_size = len(train_data)  # 训练集的长度
test_size = len(test_data)  # 测试集的长度
print(train_size)
print(test_size)
testdata = DataLoader(dataset=test_data, batch_size=32, shuffle=True, num_workers=0)  # 将训练数据以每次32张图片的形式抽出进行测试
alexnet1 = torchvision.models.alexnet(pretrained = True)   #下载预训练模型
alexnet1.add_module("linear",nn.Linear(1000 , 10))  #在预训练模型的最后一层再加上一层全连接层进行训练微调,因为本数据集是10种 而且与训练模型都是在imagenet数据集上训练的 是1000种的输出
test1 = torch.ones(64, 3, 120, 120)  # 测试一下输出的形状大小
#其他地方跟alexnet的代码一样
test1 = alexnet1(test1)
print(test1.shape)
epoch = 10  # 迭代次数
learning = 0.0001  # 学习率
optimizer = torch.optim.Adam(alexnet1.parameters(), lr=learning)  # 使用Adam优化器
loss = nn.CrossEntropyLoss()  # 损失计算方式,交叉熵
train_loss_all = []  # 存放训练集损失的数组
train_accur_all = []  # 存放训练集准确率的数组
test_loss_all = []  # 存放测试集损失的数组
test_accur_all = []  # 存放测试集准确率的数组
for i in range(epoch):
    train_loss = 0
    train_num = 0.0
    train_accuracy = 0.0
    alexnet1.train()
    train_bar = tqdm(traindata)
    for step, data in enumerate(train_bar):
        img, target = data
        optimizer.zero_grad()  # 清空历史梯度
        outputs = alexnet1(img)  # 将图片打入网络进行训练
        loss1 = loss(outputs, target)
        outputs = torch.argmax(outputs, 1)
        loss1.backward()
        optimizer.step()
        train_loss += abs(loss1.item()) * img.size(0)
        accuracy = torch.sum(outputs == target)
        train_accuracy = train_accuracy + accuracy
        train_num += img.size(0)
    print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i + 1, train_loss / train_num,
                                                                train_accuracy / train_num))
    train_loss_all.append(train_loss / train_num)
    train_accur_all.append(train_accuracy.double().item() / train_num)
    test_loss = 0
    test_accuracy = 0.0
    test_num = 0
    alexnet1.eval()
    with torch.no_grad():
        test_bar = tqdm(testdata)
        for data in test_bar:
            img, target = data
            outputs = alexnet1(img)
            loss2 = loss(outputs, target)
            outputs = torch.argmax(outputs, 1)
            test_loss = test_loss + abs(loss2.item()) * img.size(0)
            accuracy = torch.sum(outputs == target)
            test_accuracy = test_accuracy + accuracy
            test_num += img.size(0)
    print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
    test_loss_all.append(test_loss / test_num)
    test_accur_all.append(test_accuracy.double().item() / test_num)
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(range(epoch), train_loss_all,
         "ro-", label="Train loss")
plt.plot(range(epoch), test_loss_all,
         "bs-", label="test loss")
plt.legend()
plt.xlabel("epoch")
plt.ylabel("Loss")
plt.subplot(1, 2, 2)
plt.plot(range(epoch), train_accur_all,
         "ro-", label="Train accur")
plt.plot(range(epoch), test_accur_all,
         "bs-", label="test accur")
plt.xlabel("epoch")
plt.ylabel("acc")
plt.legend()
plt.show()
torch.save(alexnet1, "xiaozhai.pth")
print("模型已保存")
相关文章
|
3月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
657 0
|
3月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
287 0
|
4月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
220 0
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
340 7
|
6月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
9月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
10月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
10月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
11月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
10月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。

热门文章

最新文章

推荐镜像

更多