机器学习实战_初识朴素贝叶斯算法_理解其python代码(二)

简介: 机器学习实战_初识朴素贝叶斯算法_理解其python代码(二)

python 基础:

中间还有pickle二进制读取文件部分的error这个可以参见:机器学习实战初识决策树(ID3)算法理解其python代码(二)的第四部分

append: Appends object at end.:

x = [1, 2, 3]
x.append([4, 5])
print (x)
[1, 2, 3, [4, 5]]

extend: Extends list by appending elements from the iterable.:

x = [1, 2, 3]
x.extend([4, 5])
print (x)
[1, 2, 3, 4, 5]

测试算法:

import random
import re
from numpy import array
import LoadData
import bayes
def textParse(bigString):#接收大字符串,解析处理后返回字符串列表(去掉少于两个字符的字符串,并将所有字符串转换为小写)
    listOfTokens = re.compile('\\W*')
    listOfTokens = listOfTokens.split(bigString)#compile()split(r'\W*',bigString)#正则表达式re模块,详见之前的文章
    return [tok.lower() for tok in listOfTokens if len(tok)>0]#列表解析
'''这里出现错误最多的也还是Py2.x和Py3.x的不同导致的问题'''
def spamTest():
    docList = []
    classList = []
    fullText = []
    #读取25*2个文本
    for i in range(1,26):
        wordList = textParse(open('email/spam/%d.txt' % i,'rb').read().decode('GBK','ignore') )#1,UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 199: illegal multibyte sequence
        #加上后面的后綴,因为有可能文件中存在类似“�”非法字符。
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(1)
        wordList = textParse(open('email/ham/%d.txt' % i,'rb').read().decode('GBK','ignore') )#UnicodeDecodeError: 'gbk' codec can't decode byte 0xae in position 199: illegal multibyte sequence
        #这里还是Pickle的二进制问题,所以要加上‘rb’,其他nicodeDecodeError同上
        #注意append和extend的区别
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)
    vocabList = LoadData.createVocabList(docList)#得到参考用的词典
    #随机构建训练集
    trainingSet = list(range(50))
    testSet = []
    for i in range(10):#得到随机测试集
        randIndex = int(random.uniform(0,len(trainingSet)))
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])#TypeError: 'range' object doesn't support item deletion,因为是python3中range不返回数组对象,而是返回range对象,所以trainingSet = list(range(50))而不是range(50)
    trainMat = [];trainClasses = []
    for docIndex in trainingSet:
        trainMat.append(LoadData.setOfWords2Vec(vocabList,docList[docIndex]))
        trainClasses.append(classList[docIndex])
    p0V,p1V,pSpam = bayes.trainNB0(array(trainMat),array(trainClasses))#计算相应的概率
    errorCount = 0
    for docIndex in testSet:
        wordVector = LoadData.setOfWords2Vec(vocabList,docList[docIndex])
        if bayes.classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:#判断文本的类别
            errorCount+=1
    print('the error rate is :',float(errorCount)/len(testSet))

AIEarth是一个由众多领域内专家博主共同打造的学术平台,旨在建设一个拥抱智慧未来的学术殿堂!【平台地址:https://devpress.csdn.net/aiearth】 很高兴认识你!加入我们共同进步!

目录
相关文章
|
2月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
3月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
213 26
|
2月前
|
算法 数据可视化 测试技术
HNSW算法实战:用分层图索引替换k-NN暴力搜索
HNSW是一种高效向量检索算法,通过分层图结构实现近似最近邻的对数时间搜索,显著降低查询延迟。相比暴力搜索,它在保持高召回率的同时,将性能提升数十倍,广泛应用于大规模RAG系统。
251 10
HNSW算法实战:用分层图索引替换k-NN暴力搜索
|
2月前
|
机器学习/深度学习 缓存 算法
微店关键词搜索接口核心突破:动态权重算法与语义引擎的实战落地
本文详解微店搜索接口从基础匹配到智能推荐的技术进阶路径,涵盖动态权重、语义理解与行为闭环三大创新,助力商家提升搜索转化率、商品曝光与用户留存,实现技术驱动的业绩增长。
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
3月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
3月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
234 0
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
293 0
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
579 14