【C++】内联函数&&auto关键字&&基于范围的for循环&&指针空值nullptr(上)

简介: 【C++】内联函数&&auto关键字&&基于范围的for循环&&指针空值nullptr(上)

👉内联函数👈


概念


inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。

714ad1138d724629a856e0ea945be85d.png

如果在上述函数前增加 inline 关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。


如果有一个被频繁调用的小函数,每次调用都需要建立栈帧,开销就会比较大。所以可以在函数前面加上 inline 关键字将其改成内联函数。如果是C语言的话,我们可以将这个小函数改成宏来优化,减少建立栈帧的消耗。那为什么编译宏呢?因为宏不能调试,没有类型安全检查且容易写错。我们通过一下的代码来回顾一下宏容易出错的地方。


#include <stdio.h>
#define ADD(x, y) ((x) + (y))
int main()
{
  // 不能加分号
  if (ADD(1, 2))
  {
  }
  // 不加外层括号
  ADD(1, 2) * 3;
  // 不加内层括号
  // 优先级问题
  int a = 1;
  int b = 2;
  ADD(a | b, a & b);
  return 0;
}


查看方式


  • 在release模式下,查看编译器生成的汇编代码中是否存在call Add
  • 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化,一下为 vs2013 的设置方式)

e16ddae1125f4dab893be719df9d0585.png


设置好后,我们再来看一下其对应的汇编代码。我们就可以发现内联函数确实不会建立函数栈帧。如下图:

8ea593a297864bd79722b760af2470c2.png


特性


inline 是一种以空间(编译出来可执行程序的大小)换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。

inline 对于编译器而言只是一个建议,不同编译器关于 inline 实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用 inline 修饰,否则编译器会忽略 inline 特性。下图为《C++prime》第五版关于inline的建议:


fe9971d3e95a44d88da26475b39ad551.png


inline 不建议声明和定义分离,分离会导致链接错误。因为 inline 被展开,就没有函数地址了,链接就会找不到。



为什么内联函数的代码过长时,内联函数不会展开呢?假设内联函数的指令有 30 条,并且该函数被调用了 10000 次。如果内联函数展开了,那么将会有 30W 行指令;如果内联函数没有展开,那么将会有 10030 行指令。这时候,如果内联函数展开的话,就会导致代码膨胀的问题。指令的多少会影响可执行程序的大小,也就是安装包的大小。


inline 不支持声明和定义分类


// Test.h
#pragma once
#include <iostream>
using namespace std;
inline int fun();
// Test.cpp
#include "Test.h"
inline int fun()
{
  int a = 10 + 20;
  return a;
}
// main.cpp
#include "Test.h"
int main()
{
  int ret = fun();
  cout << ret << endl;
}

f3e7272b65be4881b2501b5ccfcd90d7.png


为什么内联函数的声明和定义分离时会出现链接错误呢?链接过程主要做的是把多个目标文件(.o文件)和链接库进行链接,然后生成可执行程序a.out。在这个过程主要做的是合并段表以及符号表的合并和重定位。如果函数加上inline 修饰时,那么该函数的地址就不会被添加到符号表中。如果我在main.cpp文件中调用了fun函数,且main.cpp文件只有fun函数的声明,没有fun函数的定义,也就是没有fun函数的地址。那么就要在链接的合并符号表时找出fun函数的地址,但是fun函数被 inline 修饰了,其地址没有添加到符号表中。所以就找不到fun函数的地址,就出现了链接错误。所以,内联函数的声明和定义不能够分离。


注意:如果函数用 inline 修饰,那么函数的地址就不会进符号表,不管函数的代码是否过长。


👉auto关键字(C++11)👈


类型别名


随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:1.类型难于拼写;2.含义不明确导致容易出错。


比如:下面的代码中it的类型名是不是非常地长,写起来容易出错。

#include <string>
#include <map>
int main()
{
  std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange",
  "橙子" },
  {"pear","梨"} };
  std::map<std::string, std::string>::iterator it = m.begin();
  while (it != m.end())
  {
    //....
  }
  return 0;
}


那么 C++11的标准就阴影里一个小语法,就auto关键字能够自动推导变量的类型。见下方的代码:


#include <string>
#include <map>
int main()
{
  std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange",
  "橙子" },
  {"pear","梨"} };
  auto it = m.begin();
  while (it != m.end())
  {
    //....
  }
  return 0;
}


在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此 C++11 给auto关键字赋予了新的含义。


auto简介


在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它。


在C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。


#include <iostream>
using namespace std;
int TestAuto()
{
  return 10;
}
int main()
{
  int a = 10;
  auto b = a;
  auto c = 'a';
  auto d = TestAuto();
  cout << typeid(b).name() << endl;
  cout << typeid(c).name() << endl;
  cout << typeid(d).name() << endl;
  //auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
  return 0;
}

2413861dc9c14cf1b64707acc465d5e5.png


注意:使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译时会将auto替换为变量实际的类型。


注:typeid().name能将变量的类型转换成字符串。







相关文章
|
存储 安全 编译器
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值(一)
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值
215 1
|
存储 安全 编译器
C++入门 | auto关键字、范围for、指针空值nullptr
C++入门 | auto关键字、范围for、指针空值nullptr
299 4
|
存储 编译器 程序员
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值(二)
【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值
175 0
|
程序员 编译器 C语言
云原生部署问题之C++中的nullptr相比C语言中的NULL优势如何解决
云原生部署问题之C++中的nullptr相比C语言中的NULL优势如何解决
183 10
|
编译器 C语言 C++
【C++关键字】指针空值nullptr(C++11)
【C++关键字】指针空值nullptr(C++11)
|
10月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
8月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
350 12
|
6月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
192 0
|
6月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
294 0
|
9月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
193 16

热门文章

最新文章