C语言代码封装MQTT协议报文,了解MQTT协议通信过程

简介: MQTT是一种轻量级的通信协议,适用于物联网(IoT)和低带宽网络环境。它基于一种“发布/订阅”模式,其中设备发送数据(也称为 “发布”)到经纪人(称为MQTT代理),这些数据被存储,并在需要时被转发给订阅者。这种方式简化了网络管理,允许多个设备在不同的网络条件下进行通信(包括延迟和带宽限制),并支持实时数据更新。它是开放的,可免费使用并易于实施。

【1】MQTT协议介绍

MQTT是一种轻量级的通信协议,适用于物联网(IoT)和低带宽网络环境。它基于一种“发布/订阅”模式,其中设备发送数据(也称为 “发布”)到经纪人(称为MQTT代理),这些数据被存储,并在需要时被转发给订阅者。这种方式简化了网络管理,允许多个设备在不同的网络条件下进行通信(包括延迟和带宽限制),并支持实时数据更新。它是开放的,可免费使用并易于实施。

【2】MQTT协议报文字段介绍

MQTT协议报文由两部分组成:固定报头和可变报头。

固定报头的格式是统一的,其中包括了报文类型和剩余长度两个字段。

可变报头的格式取决于报文类型。

下面是MQTT协议中各个报文类型的可变报头字段说明。

(1)CONNECT:MQTT连接请求报文

CONNECT报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节(即报文类型和标志位的组合)为0x10,表示这是一个CONNECT报文。

可变报头包括了以下字段:

  • 协议名(Protocol Name):用于标识MQTT协议的名称,固定为字符串"MQTT";
  • 协议级别(Protocol Level):用于标识所使用的MQTT协议的版本号,一般情况下为4;
  • 连接标志(Connect Flags):用于设置各种连接选项,其中包括:
  • 用户名/密码(Username/Password):用于对连接进行身份验证;
  • 清理会话(Clean Session):表示客户端需要清除服务器上旧的Session信息;
  • 遗嘱标志(Will Flag):表示客户端是否需要在与服务器的连接意外断开时发送遗嘱信息;
  • 遗嘱QoS(Will QoS):用于设置遗嘱消息的服务质量等级;
  • 遗嘱保留(Will Retain):表示遗嘱消息是否需要被服务器保留;
  • 用户名标志(Username Flag):表示客户端是否需要发送用户名字段;
  • 密码标志(Password Flag):表示客户端是否需要发送密码字段。
  • 保持连接(Keep Alive):用于设置心跳包的发送间隔时间,以便客户端和服务器之间保持连接。

(2)CONNACK:MQTT连接响应报文

CONNACK报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0x20,表示这是一个CONNACK报文。

可变报头包括了以下字段:

  • 连接应答(Connect Acknowledgment):用于表示连接是否成功,一般为0表示成功,其他值表示失败;
  • 保留标志(Reserved Flag):保留字段,必须为0。

(3)PUBLISH:MQTT发布消息报文

PUBLISH报文包括固定报头和可变报头两部分,以及消息体。其中,固定报头的第一个字节由报文类型和QoS级别组合而成,QoS级别可以为0、1或2。

可变报头包括了以下字段:

  • 主题名(Topic Name):用于标识消息的主题;
  • 报文标识符(Packet Identifier):用于在QoS级别为1或2时确认消息分发的情况,如果为0则表示QoS级别为0。

消息体包括了要发布的消息内容。

(4)PUBACK:MQTT发布确认报文

PUBACK报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0x40,表示这是一个PUBACK报文。

可变报头仅包括一个报文标识符(Packet Identifier)字段,用于确认QoS级别为1的发布消息。

(5)PUBREC:MQTT发布接收报文

PUBREC报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0x50,表示这是一个PUBREC报文。

可变报头仅包括一个报文标识符(Packet Identifier)字段,用于确认QoS级别为2的发布消息。

(6)PUBREL:MQTT发布释放报文

PUBREL报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0x62,表示这是一个PUBREL报文。

可变报头仅包括一个报文标识符(Packet Identifier)字段,用于确认QoS级别为2的发布消息。

(7)PUBCOMP:MQTT发布完成报文

PUBCOMP报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0x70,表示这是一个PUBCOMP报文。

可变报头仅包括一个报文标识符(Packet Identifier)字段,用于确认QoS级别为2的发布消息。

(8)SUBSCRIBE:MQTT订阅请求报文

SUBSCRIBE报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0x82,表示这是一个SUBSCRIBE报文。

可变报头包括了以下字段:

  • 报文标识符(Packet Identifier):用于确认订阅请求的情况;
  • 订阅主题(Subscription Topic):用于设置订阅的主题;
  • 服务质量等级(QoS Level):用于设置订阅请求使用的服务质量等级,可以为0、1或2。

(9)SUBACK:MQTT订阅确认报文

SUBACK报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0x90,表示这是一个SUBACK报文。

可变报头包括了以下字段:

  • 报文标识符(Packet Identifier):用于确认订阅请求的情况;
  • 订阅确认等级(Subscription Acknowledgment):用于确认订阅请求的服务质量等级,可以为0、1或2。

(10)UNSUBSCRIBE:MQTT取消订阅报文

UNSUBSCRIBE报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0xA2,表示这是一个UNSUBSCRIBE报文。

可变报头包括了以下字段:

  • 报文标识符(Packet Identifier):用于确认取消订阅请求的情况;
  • 订阅主题(Subscription Topic):用于设置要取消订阅的主题。

(11)UNSUBACK:MQTT取消订阅确认报文

UNSUBACK报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0xB0,表示这是一个UNSUBACK报文。

可变报头仅包含报文标识符(Packet Identifier)字段,用于确认取消订阅请求。

(12)PINGREQ:MQTT心跳请求报文

PINGREQ报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0xC0,表示这是一个PINGREQ报文。

PINGREQ报文不包含可变报头字段。

(13)PINGRESP:MQTT心跳响应报文

PINGRESP报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0xD0,表示这是一个PINGRESP报文。

PINGRESP报文不包含可变报头字段。

(14)DISCONNECT:MQTT断开连接报文

DISCONNECT报文包括固定报头和可变报头两部分。其中,固定报头的第一个字节为0xE0,表示这是一个DISCONNECT报文。

DISCONNECT报文不包含可变报头字段。

【3】封装MQTT协议

这是一个使用C语言在Linux下建立TCP通信并发送MQTT报文的例子。 根据MQTT报文自己封装协议。

cpp

#include<stdio.h>#include<stdlib.h>#include<string.h>#include<sys/socket.h>#include<arpa/inet.h>#include<unistd.h> // 定义MQTT报文类型#define MQTT_CONNECT    0x10#define MQTT_CONNACK    0x20#define MQTT_PUBLISH    0x30#define MQTT_PUBACK     0x40#define MQTT_SUBSCRIBE  0x80#define MQTT_SUBACK     0x90#define MQTT_UNSUBSCRIBE    0xA0#define MQTT_UNSUBACK   0xB0#define MQTT_PINGREQ    0xC0#define MQTT_PINGRESP   0xD0#define MQTT_DISCONNECT    0xE0 // 定义MQTT连接标志#define MQTT_CONNECT_FLAG_CLEAN     0x02#define MQTT_CONNECT_FLAG_WILL      0x04#define MQTT_CONNECT_FLAG_WILL_QOS0 0x00#define MQTT_CONNECT_FLAG_WILL_QOS1 0x08#define MQTT_CONNECT_FLAG_WILL_QOS2 0x10#define MQTT_CONNECT_FLAG_WILL_RETAIN   0x20#define MQTT_CONNECT_FLAG_PASSWORD  0x40#define MQTT_CONNECT_FLAG_USERNAME  0x80 // 定义MQTT报文结构体typedefstructmqtt_packet {     unsignedchar *data;     unsignedint length; }mqtt_packet_t; // 建立socket连接并返回socket文件描述符intsocket_connect(char *address, int port) {     structsockaddr_in server_address;     int socket_fd = socket(AF_INET, SOCK_STREAM, 0);     if (socket_fd == -1)      {         printf("Failed to create socket!\n");         return-1;     }     server_address.sin_family = AF_INET;     server_address.sin_port = htons(port);     if ((inet_pton(AF_INET, address, &server_address.sin_addr)) <= 0)      {         printf("Invalid address/ Address not supported\n");         return-1;     }     if (connect(socket_fd, (struct sockaddr *)&server_address, sizeof(server_address)) < 0)      {         printf("Connection Failed!\n");         return-1;     }     return socket_fd; }// 打包MQTT连接报文 mqtt_packet_t *mqtt_connect(char *client_id, char *username, char *password) {     mqtt_packet_t *packet = (mqtt_packet_t *)malloc(sizeof(mqtt_packet_t));     unsignedchar *data = (unsignedchar *)malloc(256);     unsignedint length = 0;     // 固定报头      data[length++] = MQTT_CONNECT;     // 可变报头      data[length++] = 0x0C;     // 清理会话标志和协议版本号     data[length++] = 'M';     data[length++] = 'Q';     data[length++] = 'T';     data[length++] = 'T';     data[length++] = 0x04;     // 协议版本号 // 连接标志      unsignedchar flags = MQTT_CONNECT_FLAG_CLEAN;     if (username != NULL)      {         flags |= MQTT_CONNECT_FLAG_USERNAME;     }     if (password != NULL)      {         flags |= MQTT_CONNECT_FLAG_PASSWORD;     }     data[length++] = flags;     data[length++] = 0xFF;     // 保持连接时间低8位      data[length++] = 0xFF;     // 保持连接时间高8位 // 剩余长度      unsignedchar remaining_length = length - 1;     data[remaining_length++] = (unsignedchar)(length - 2);     packet->data = data;     packet->length = length;     return packet; }// 发送MQTT报文 voidmqtt_send(int socket_fd, mqtt_packet_t *packet) {     if (send(socket_fd, packet->data, packet->length, 0) < 0)      {         printf("Failed to send message!\n");     } }// 接收MQTT报文intmqtt_recv(int socket_fd, mqtt_packet_t *packet) {     unsignedchar header[2];     if (recv(socket_fd, header, 2, 0) != 2)      {         printf("Failed to receive message header!\n");         return-1     }     unsignedint remaining_length = 0;     unsignedint multiplier = 1;     int i = 1;     do     {         if (recv(socket_fd, &header[i], 1, 0) != 1)          {             printf("Failed to receive remaining_length byte %d!\n", i);             return-1;         }         remaining_length += (header[i] & 127) * multiplier;         multiplier *= 128;         i++;     }     while ((header[i - 1] & 128) != 0);     packet->length = remaining_length + i;     packet->data = (unsignedchar *)malloc(packet->length);     memcpy(packet->data, header, 2);     if (recv(socket_fd, packet->data + 2, packet->length - 2, 0) != packet->length - 2)      {         printf("Failed to receive full message!\n");         return-1;     }     return0; }  intmain(int argc, char *argv[]) {     // 建立 TCP 连接      int socket_fd = socket_connect("test.mosquitto.org", 1883);     if (socket_fd == -1)      {         printf("Failed to connect to MQTT server!\n");         return-1;     }     printf("Connected to MQTT server!\n");     // 打包并发送 MQTT 连接报文     mqtt_packet_t *connect_packet = mqtt_connect("test_client", NULL, NULL);     mqtt_send(socket_fd, connect_packet);     printf("Sent MQTT CONNECT packet!\n");     free(connect_packet->data);     free(connect_packet);     // 接收 MQTT CONNACK 报文     mqtt_packet_t *connack_packet = (mqtt_packet_t *)malloc(sizeof(mqtt_packet_t));     if (mqtt_recv(socket_fd, connack_packet) != 0)      {         printf("Failed to receive MQTT CONNACK packet!\n");         return-1;     }     if (connack_packet->data[1] != 0x00)      {         printf("MQTT server rejected connection!\n");         return-1;     }     printf("Received MQTT CONNACK packet!\n");     free(connack_packet->data);     free(connack_packet);     // 断开 TCP 连接 close(socket_fd); return 0;  }     
相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
8月前
|
消息中间件 Java 数据库
RocketMQ实战—9.营销系统代码初版
本文主要介绍了实现营销系统四大促销场景的代码初版:全量用户推送促销活动、全量用户发放优惠券、特定用户推送领取优惠券消息、热门商品定时推送。
RocketMQ实战—9.营销系统代码初版
|
3月前
|
数据采集 传感器 监控
Modbus 与 MQTT 协议兼容:MyEMS 的泛在能源数据采集技术实现
MyEMS深度融合Modbus与MQTT协议,破解能源数据采集中协议碎片化、网络异构、数据孤岛等难题。通过Modbus接入95%以上工业设备,实现现场数据精准“拉取”;依托MQTT构建高效物联网传输通道,支持多源数据主动“推送”与云端集成。边缘侧采集规整,中心侧汇聚分析,形成统一、可靠、低延迟的数据流。该架构兼具高兼容性、强扩展性与低运维成本,广泛应用于工业园区、商业楼宇及集团型企业,支撑实时监控、AI分析与跨系统融合,打造泛在互联的能源数据底座,助力企业实现全面智慧能源管理。
328 6
|
存储 安全 数据管理
C语言之考勤模拟系统平台(千行代码)
C语言之考勤模拟系统平台(千行代码)
237 4
|
10月前
|
数据可视化 关系型数据库 MySQL
嵌入式C++、STM32、MySQL、GPS、InfluxDB和MQTT协议数据可视化
通过本文的介绍,我们详细讲解了如何结合嵌入式C++、STM32、MySQL、GPS、InfluxDB和MQTT协议,实现数据的采集、传输、存储和可视化。这种架构在物联网项目中非常常见,可以有效地处理和展示实时数据。希望本文能帮助您更好地理解和应用这些技术,构建高效、可靠的数据处理和可视化系统。
621 82
|
6月前
|
监控 安全 Java
Java 开发中基于 Spring Boot 3.2 框架集成 MQTT 5.0 协议实现消息推送与订阅功能的技术方案解析
本文介绍基于Spring Boot 3.2集成MQTT 5.0的消息推送与订阅技术方案,涵盖核心技术栈选型(Spring Boot、Eclipse Paho、HiveMQ)、项目搭建与配置、消息发布与订阅服务实现,以及在智能家居控制系统中的应用实例。同时,详细探讨了安全增强(TLS/SSL)、性能优化(异步处理与背压控制)、测试监控及生产环境部署方案,为构建高可用、高性能的消息通信系统提供全面指导。附资源下载链接:[https://pan.quark.cn/s/14fcf913bae6](https://pan.quark.cn/s/14fcf913bae6)。
1219 0
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
存储 数据建模 程序员
C 语言结构体 —— 数据封装的利器
C语言结构体是一种用户自定义的数据类型,用于将不同类型的数据组合在一起,形成一个整体。它支持数据封装,便于管理和传递复杂数据,是程序设计中的重要工具。
|
数据采集 传感器 监控
多协议网关BL110钡铼6路RS485转MQTT协议云网关
BL110钡铼6路RS485转MQTT协议云网关是一款高性能、易配置的工业级设备,适用于各种需要远程监控和数据采集的物联网应用场景。通过将传统RS485设备的数据转换为MQTT协议并上传至云平台,实现了设备的远程管理和智能控制,极大地提升了系统的管理效率和响应速度。
454 2
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
466 1