音乐推荐与管理系统Python+Django网页界面+协同过滤推荐算法

简介: 音乐推荐与管理系统Python+Django网页界面+协同过滤推荐算法

一、介绍

音乐推荐与管理系统。本系统采用Python作为主要开发语言,前端使用HTML、CSS、BootStrap等技术搭建界面平台,后端使用Django框架处理请求,并基于Ajax等技术实现前端与后端的数据通信。在音乐个性推荐功能模块中采用通过Python编写协同过滤推荐算法模块,实现对当前登录用户的个性化推荐。
主要功能有:

  • 系统分为普通用户和管理员两个角色
  • 普通用户可以登录、注册、查看音乐列表、查看音乐详情、播放音乐、收藏、发布评论、查看编辑个人信息、查看浏览量排行、查看编辑个人收集信息、音乐推荐等
  • 管理员在后台管理系统中可以管理音乐和用户等所有信息

    二、系统效果图片

    img_11_04_13_06_48.jpg
    img_11_04_13_07_03.jpg
    img_11_04_13_07_14.jpg
    img_11_04_13_06_35.jpg

三、演示视频 and 代码

视频+代码:https://www.yuque.com/ziwu/yygu3z/noq0cs1vn3dhbykv

四、协同过滤算法介绍

协同过滤算法是一种推荐系统算法,核心思想是根据用户历史行为数据之间的相似度来进行推荐。协同过滤算法主要分为两大类:基于用户的协同过滤和基于物品的协同过滤。
基于用户的协同过滤算法的步骤如下:

  1. 计算用户之间的相似度。
  2. 找到目标用户的相似用户(邻居)。
  3. 结合邻居用户的评分,预测目标用户对未评分物品的评分。
  4. 推荐预测评分高的物品给目标用户。

在这个算法中,用户相似度的计算是关键,常见的相似度计算方法有皮尔逊相关系数(Pearson Correlation Coefficient)、余弦相似度(Cosine Similarity)和欧氏距离(Euclidean Distance)等。
下面是一个简单的基于用户的协同推荐算法功能模块的Python实现,使用了NumPy库来处理数据:

import numpy as np

# 用户-物品评分矩阵
# 假设有5个用户和4个物品,矩阵中的数字代表用户对物品的评分,0表示未评分
ratings = np.array([
    [5, 3, 0, 1],
    [4, 0, 0, 1],
    [1, 1, 0, 5],
    [1, 0, 0, 4],
    [0, 1, 5, 4],
])

# 计算用户之间的相似度,这里使用余弦相似度
def cosine_similarity(ratings):
    # 确保不会除以0
    epsilon = 1e-9
    # 计算用户评分的模长
    magnitude = np.sqrt(np.einsum('ij, ij -> i', ratings, ratings)) + epsilon
    # 使用外积计算余弦相似度
    similarity = ratings @ ratings.T / np.outer(magnitude, magnitude)
    return similarity

# 基于用户的协同过滤推荐
def user_based_recommendation(user_index, ratings, similarity, k=3):
    """
    :param user_index: 需要推荐的用户索引
    :param ratings: 用户-物品评分矩阵
    :param similarity: 用户相似度矩阵
    :param k: 邻居数量
    :return: 推荐评分列表
    """
    # 找出用户已评分的物品索引
    rated_items = np.where(ratings[user_index] > 0)[0]
    # 未评分的物品
    unrated_items = np.where(ratings[user_index] == 0)[0]

    # 用于存储预测评分
    pred_ratings = np.zeros(ratings.shape[1])

    # 对于未评分的物品进行评分预测
    for item in unrated_items:
        # 计算用户对物品item的评分预测
        neighbors = np.argsort(similarity[user_index])[::-1][1:k+1]  # 最相似的k个用户
        # 计算邻居的相似度和它们对物品item的评分
        numerator = similarity[user_index][neighbors].dot(ratings[neighbors, item])
        denominator = np.sum(np.abs(similarity[user_index][neighbors]))
        pred_ratings[item] = numerator / denominator if denominator != 0 else 0

    # 返回已评分的保持原样,未评分的用预测值替代
    final_ratings = ratings[user_index].copy()
    final_ratings[unrated_items] = pred_ratings[unrated_items]

    return final_ratings

# 计算用户相似度矩阵
user_similarity = cosine_similarity(ratings)

# 为第一个用户进行推荐
recommendations = user_based_recommendation(0, ratings, user_similarity)
print("推荐评分:", recommendations)

在这个例子中,ratings矩阵代表了5个用户对4个物品的评分情况,未评分的部分用0表示。我们使用余弦相似度来计算用户之间的相似度,并且定义了user_based_recommendation函数来根据用户的相似度和已有的评分来预测目标用户对未评分物品的评分,并返回一个包含所有物品评分的列表(包括预测的评分和原来的评分)。这个列表可以用来对物品进行排序,最后推荐评分最高的物品给用户。

目录
相关文章
|
6月前
|
Linux 数据库 数据安全/隐私保护
Python web Django快速入门手册全栈版,共2590字,短小精悍
本教程涵盖Django从安装到数据库模型创建的全流程。第一章介绍Windows、Linux及macOS下虚拟环境搭建与Django安装验证;第二章讲解项目创建、迁移与运行;第三章演示应用APP创建及项目汉化;第四章说明超级用户创建与后台登录;第五章深入数据库模型设计,包括类与表的对应关系及模型创建步骤。内容精炼实用,适合快速入门Django全栈开发。
313 1
|
8月前
|
前端开发 JavaScript 关系型数据库
基于python的租房网站-房屋出租租赁系统(python+django+vue)源码+运行
该项目是基于python/django/vue开发的房屋租赁系统/租房平台,作为本学期的课程作业作品。欢迎大家提出宝贵建议。
306 6
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
708 45
|
安全 数据库 开发者
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第26天】本文详细介绍了如何在Django框架下进行全栈开发,包括环境安装与配置、创建项目和应用、定义模型类、运行数据库迁移、创建视图和URL映射、编写模板以及启动开发服务器等步骤,并通过示例代码展示了具体实现过程。
386 2
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
754 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
874 4
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
505 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
558 7
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
前端开发 搜索推荐 算法
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
中草药管理与推荐系统。本系统使用Python作为主要开发语言,前端使用HTML,CSS,BootStrap等技术和框架搭建前端界面,后端使用Django框架处理应用请求,使用Ajax等技术实现前后端的数据通信。实现了一个综合性的中草药管理与推荐平台。具体功能如下: - 系统分为普通用户和管理员两个角色 - 普通用户可以登录,注册、查看物品信息、收藏物品、发布评论、编辑个人信息、柱状图饼状图可视化物品信息、并依据用户注册时选择的标签进行推荐 和 根据用户对物品的评分 使用协同过滤推荐算法进行推荐 - 管理员可以在后台对用户和物品信息进行管理编辑
480 12
中草药管理与推荐系统Python+Django网页界面+推荐算法+计算机课设系统+网站开发
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
454 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台

推荐镜像

更多