OpenCV中LBPH人脸识别器识别人脸实战(附Python源码)

简介: OpenCV中LBPH人脸识别器识别人脸实战(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

Local Binary Pattern Histofram简称LBPH,即局部二进制模式直方图,这是一种基于局部二进制模式算法,这种算法善于捕获局部纹理特征

开发者需要通过以下三种方法来完成人脸识别操作

1:通过cv2.face.LBPHFaceRecognizer_create()方法创建LBPH人脸识别器对象 语法如下

recognizer=cv2.face.LBPHFaceRecognizer_create(radius,neighbors,grid_x,grid_y,threshold)

radius:可选参数 圆形局部二进制模式的半径,建议使用默认值

neighbors:可选参数,圆形局部二进制模式的采样点数目,建议使用默认值

grid_x:可选参数 水平方向上的的单元格数,建议使用默认值

grid_y:可选参数 垂直方向上的的单元格数  建议使用默认值

threshold:可选参数 人脸识别时使用的阈值,建议使用默认值

2:创建识别器对象后,需要通过对象的train方法训练识别器,建议每个人都给出两幅以上的人脸图像作为训练样本,train方法的语法如下

recognizer.train(src,labels)

参数说明

recognizer 已有的LBPH人脸识别器对象

src 用来训练的人脸图像样本列表,格式为list,样本图像必须宽高一致

labels 样本对应的标签,格式为数组,元素类型为整数,数组长度必须与样本列表长度相同,样本与标签按照插入顺序一一对应

3:训练识别器后就可以通过识别器的predict方法识别人脸,该方法对比样本的特征,给出最接近的结果和评分,语法如下

label,confidence=recognizer.predict(src)

参数说明

src 需要识别的人脸图像 该图像宽高必须与样本一致

label 与样本匹配程度最高的标签值

confidenct 匹配程度最高的信用度评分,评分小于50匹配程度较高,0分表示两幅图像完全一样

下面使用LBPH识别人脸实战

下面以两个人的照片作为训练样本

待识别照片如下

程序输出如下

confidence=45.0823265

RuiRui

程序对比样本特征分析得出,被识别的人物最接近的是RuiRui

部分代码如下

import cv2
import numpy as np
photos = list()  # 样本图像列表
lables = list()  # 标签列表
photos.append(cv2.imread("face\\lxe1.png", 0))  # 记录第1张人脸图像
lables.append(0)  # 第1张图像对应的标签
photos.append(cv2.imread("face\\lxe2.png", 0))  # 记录第2张人脸图像
lables.append(0)  # 第2张图像对应的标签
photos.append(cv2.imread("face\\lxe3.png", 0))  # 记录第3张人脸图像
lables.append(0)  # 第3张图像对应的标签
photos.append(cv2.imread("face\\ruirui1.png", 0))  # 记录第4张人脸图像
lables.append(1)  # 第4张图像对应的标签
photos.append(cv2.imread("face\\ruirui2.png", 0))  # 记录第5张人脸图像
lables.append(1)  #图像对应的标签
photos.append(cv2.imread("face\\ruirui3.png", 0))  # 记录第6张人脸图像
lables.append(1)  # 第6张图像对应的标签
names = {"0": "LXE", "1": "RuiRui"}  # 标签对应的名称字典
recognier = cv2.face.LBPHFaceRecognizer_create()  # 创建LBPH识别器(photos, np.array(lables))  # 识别器开始训练
i = cv2.imread("face\\ruirui4.png", 0)  # 待识别的人脸图像
label, confience = recognizer.predict(i)  # 识别器开始分析人脸图像
print("confidee= " + str(confidence))  # 打印评分
print(names[str(lael)])  # 数组字典里标签对应的名字
cv2.waitKey()  #下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

总结

人脸检测和人脸识别是相辅相成的,这是因为在进行人脸识别前,要先判断当前图像内是否出现了人脸,这个判断过程需要由人脸检测完成。只有在当前图像内检测到人脸,才能判断出这张人脸属于哪个人,这个判断是由人脸识别器完成的。因此,人脸识别指的是程序先在图像内检测人脸,再识别这张人脸属于哪个人的过程

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
5月前
|
数据安全/隐私保护 计算机视觉 Python
人脸识别图片眨眼生成器,手机制作人脸眨眼张嘴, 代替真人刷脸软件
代码实现了基于面部特征点的人脸动画生成,包括眨眼和张嘴动作。它使用dlib进行人脸检测和特征点定位
|
5月前
|
数据安全/隐私保护 计算机视觉 Python
人脸识别图片眨眼生成器,虚拟相机过人脸软件, 秒解人脸识别软件
这个系统包含三个主要模块:人脸检测与特征点识别、虚拟相机实现和主程序入口。代码使用了dlib库
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
332 1
|
计算机视觉
Opencv学习笔记(八):如何通过cv2读取视频和摄像头来进行人脸检测(jetson nano)
如何使用OpenCV库通过cv2模块读取视频和摄像头进行人脸检测,并提供了相应的代码示例。
453 1
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
MATLAB实现人脸识别检测与标出图片中人脸
MATLAB实现人脸识别检测与标出图片中人脸
249 0
|
计算机视觉 Windows Python
windows下使用python + opencv读取含有中文路径的图片 和 把图片数据保存到含有中文的路径下
在Windows系统中,直接使用`cv2.imread()`和`cv2.imwrite()`处理含中文路径的图像文件时会遇到问题。读取时会返回空数据,保存时则无法正确保存至目标目录。为解决这些问题,可以使用`cv2.imdecode()`结合`np.fromfile()`来读取图像,并使用`cv2.imencode()`结合`tofile()`方法来保存图像至含中文的路径。这种方法有效避免了路径编码问题,确保图像处理流程顺畅进行。
1759 1
|
11月前
|
XML 机器学习/深度学习 人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
545 10
|
机器学习/深度学习 计算机视觉
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
本文介绍了如何使用OpenCV进行特定区域的目标检测,包括人脸检测实例,展示了两种实现方法和相应的代码。
400 1
目标检测笔记(六):如何结合特定区域进行目标检测(基于OpenCV的人脸检测实例)
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
426 7

推荐镜像

更多