字节二面:Spring Boot Redis 可重入分布式锁实现原理?

简介: 字节二面:Spring Boot Redis 可重入分布式锁实现原理?

我是码哥,可以叫我靓仔。

这是我们最常用的分布式锁方案,今天码哥给你来一个进阶。

Chaya:「码哥,上次的分布式锁版本虽然好,但是不支持可重入获取锁,还差一点点意思。」

Chaya 别急,今日码哥给你带来一个高性能可重入 Redis 分布式锁解决方案,直捣黄龙,一笑破苍穹。

什么是可重入锁

当一个线程执行一段代码成功获取锁之后,继续执行时,又遇到加锁的代码,可重入性就就保证线程能继续执行,而不可重入就是需要等待锁释放之后,再次获取锁成功,才能继续往下执行。

public synchronized void a() {
    b();
}
public synchronized void b() {
    // doWork
}

假设 X 线程在 a 方法获取锁之后,继续执行 b 方法,如果此时不可重入,线程就必须等待锁释放,再次争抢锁。

锁明明是被 X 线程拥有,却还需要等待自己释放锁,然后再去抢锁,这看起来就很奇怪,我释放我自己~

可重入锁实现原理

Chaya:「Redis String 数据结构无法满足可重入锁,key 表示锁定的资源,value 是客户端唯一标识,可重入没地方放了。」

我们可以使用 Redis hash 结构实现,key 表示被锁的共享资源, hash 结构的 fieldKey 存储客户端唯一标识,fieldKey 的 value 则保存加锁的次数。

图 5-26

加锁原理

可重入锁加锁的过程中有以下场景需要考虑。

  1. 锁已经被 A 客户端获取,客户端 B 获取锁失败。
  2. 锁已经被客户端 A 获取,客户端 A 多次执行获取锁操作。
  3. 锁没有被其他客户端获取,那么此刻获取锁的客户端可以获取成功。

按照之前的经验,多个操作的原子性可以用 lua 脚本实现。可重入锁加锁 lua 脚本如下。

if ((redis.call('exists', KEYS[1]) == 0) or
   (redis.call('hexists', KEYS[1], ARGV[2]) == 1)) then
    redis.call('hincrby', KEYS[1], ARGV[2], 1);
    redis.call('pexpire', KEYS[1], ARGV[1]);
  return nil;
end;
return redis.call('pttl', KEYS[1]);
  • KEYS[1]是 lockKey 表示获取的锁资源,比如 lock:168
  • ARGV[1] 表示表示锁的有效时间(单位毫秒)。
  • ARGV[2] 表示客户端唯一标识,在 Redisson 中使用 UUID:ThreadID

下面我来接下是这段脚本的逻辑。

  1. 锁不存在或者锁存在且值与客户端唯一标识匹配,则执行 'hincrby'pexpire指令,接着 return nil。表示的含义就是锁不存在就设置锁并设置锁重入计数值为 1,设置过期时间;锁存在且唯一标识匹配表明当前加锁请求是锁重入请求,锁从如计数 +1,重新锁超时时间。
  • redis.call('exists', KEYS[1]) == 0判断锁是否存在,0 表示不存在。
  • redis.call('hexists', KEYS[1], ARGV[2]) == 1)锁存在的话,判断 hash 结构中 fieldKey 与客户端的唯一标识是否相等。相等表示当前加锁请求是锁重入。
  • redis.call('hincrby', KEYS[1], ARGV[2], 1)将存储在 hash 结构的 ARGV[2] 的值 +1,不存在则支持成 1。
  • redis.call('pexpire', KEYS[1], ARGV[1])KEYS[1] 设置超时时间。

锁存在,但是唯一标识不匹配,表明锁被其他线程持有,调用 pttl返回锁剩余的过期时间。

Chaya:「“脚本执行结果返回 nil、锁剩余过期时间有什么目的?”」

当且仅当返回 nil才表示加锁成功;客户端需要感知锁是否成功的结果。

解锁原理

解锁逻辑复杂一些,不仅要保证不能删除别人的锁。还要确保,重入次数为 0 才能解锁。

解锁代码执行方式与加锁类似,三个返回值含义如下。

  • 1 代表解锁成功,锁被释放。
  • 0 代表可重入次数被减 1。
  • nil 代表其他线程尝试解锁,解锁失败。
if (redis.call('hexists', KEYS[1], ARGV[2]) == 0) then
    return nil;
end;
local counter = redis.call('hincrby', KEYS[1], ARGV[2], -1);
if (counter > 0) then
    redis.call('pexpire', KEYS[1], ARGV[1]);
    return 0;
else
    redis.call('del', KEYS[1]);
    return 1;
end;
return nil;
  • KEYS[1]是 lockKey,表示锁的资源,比如 lock:order:pay
  • ARGV[1],锁的超时时间。
  • ARGV[2],Hash 表的 FieldKey。

首先使用 hexists 判断 Redis 的 Hash 表是否存在 fileKey,如果不存在则直接返回 nil解锁失败。

若存在的情况下,且唯一标识匹配,使用 hincrby 对 fileKey 的值 -1,然后判断计算之后可重入次数。当前值 > 0 表示持有的锁存在重入情况,重新设置超时时间,返回值 1;

若值小于等于 0,表明锁释放了,执行 del释放锁。

Chaya:“可重入锁很好,依然存在的一个问题是:加锁后,业务逻辑执行耗时超过了 lockKey 的过期时间,lockKey 会被 Reids 删除。”

这个时间不能瞎写,一般要根据在测试环境多次测试,然后压测多轮之后,比如计算出接口平均执行时间 200 ms。那么锁的超时时间就放大为平均执行时间的 3~5 倍。

Chaya:“锁的超时时间怎么计算合适呢?”

这个时间不能瞎写,一般要根据在测试环境多次测试,然后压测多轮之后,比如计算出接口平均执行时间 200 ms。那么锁的超时时间就放大为平均执行时间的 3~5 倍。

Chaya:“为啥要放大呢?”

因为如果锁的操作逻辑中有网络 IO 操作、JVM FullGC 等,线上的网络不会总一帆风顺,我们要给网络抖动留有缓冲时间。

Chaya:“有没有完美的方案呢?不管时间怎么设置都不大合适。”

我们可以让获得锁的线程开启一个守护线程,用来给当前客户端快要过期的锁续航,续命的前提是,得判断是不是当前进程持有的锁,如果不是就不进行续。

如果快要过期,但是业务逻辑还没执行完成,自动对这个锁进行续期,重新设置过期时间。

图 5-27

这就是下一篇我要说的超神方案,加入看门狗机制实现锁自动续期。不过锁自动续期比较复杂,今天的 Redis 可重入分布式锁王者方案已经可以让你称霸武林,接下来上实战。

可重入分布式锁实战

关于 Spring Boot 的环境搭建以及普通分布式锁实战详见上一篇《纠正误区:这才是 SpringBoot Redis 分布式锁的正确实现方式》。今天直接上可重入锁核心代码。

ReentrantDistributedLock

可重入锁由ReentrantDistributedLock标识,它实现 Lock接口,构造方法实现 resourceNameStringRedisTemplate 的属性设置。

客户端唯一标识使用uuid:threadId 组成。

public class ReentrantDistributedLock implements Lock {
    /**
     * 锁超时时间,默认 30 秒
     */
    protected long internalLockLeaseTime = 30000;
    /**
     * 标识 id
     */
    private final String id = UUID.randomUUID().toString();
    /**
     * 资源名称
     */
    private final String resourceName;
    private final List<String> keys = new ArrayList<>(1);
    /**
     * Redis 客户端
     */
    private final StringRedisTemplate redisTemplate;
    public ReentrantDistributedLock(String resourceName, StringRedisTemplate redisTemplate) {
        this.resourceName = resourceName;
        this.redisTemplate = redisTemplate;
        keys.add(resourceName);
    }
}

加锁 tryLock、lock

tryLock 以阻塞等待 waitTime 时间的方式来尝试获取锁。获取成功则返回 true,反之 false。

tryLock不同的是, lock 一直尝试自旋阻塞等待获取分布式锁,直到获取成功为止。而 tryLock 只会阻塞等待 waitTime 时间。

@Override
public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
    long time = unit.toMillis(waitTime);
    long current = System.currentTimeMillis();
    long threadId = Thread.currentThread().getId();
    // lua 脚本获取锁
    Long ttl = tryAcquire(leaseTime, unit, threadId);
    // lock acquired
    if (ttl == null) {
        return true;
    }
    time -= System.currentTimeMillis() - current;
    // 等待时间用完,获取锁失败
    if (time <= 0) {
        return false;
    }
    // 自旋获取锁
    while (true) {
        long currentTime = System.currentTimeMillis();
        ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired
        if (ttl == null) {
            return true;
        }
        time -= System.currentTimeMillis() - currentTime;
        if (time <= 0) {
            return false;
        }
    }
}
@Override
public void lock(long leaseTime, TimeUnit unit) {
    long threadId = Thread.currentThread().getId();
    Long ttl = tryAcquire(leaseTime, unit, threadId);
    // lock acquired
    if (ttl == null) {
        return;
    }
    do {
        ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired
    } while (ttl != null);
}
private Long tryAcquire(long leaseTime, TimeUnit unit, long threadId) {
    // 执行 lua 脚本
    DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>(LuaScript.reentrantLockScript(), Long.class);
    return redisTemplate.execute(redisScript, keys, String.valueOf(unit.toMillis(leaseTime)), getRequestId(threadId));
}
private String getRequestId(long threadId) {
    return id + ":" + threadId;
}

解锁 unlock

public void unlock() {
        long threadId = Thread.currentThread().getId();
        // 执行 lua 脚本
        DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>(LuaScript.reentrantUnlockScript(), Long.class);
        Long opStatus = redisTemplate.execute(redisScript, keys, String.valueOf(internalLockLeaseTime), getRequestId(threadId));
        if (opStatus == null) {
            throw new IllegalMonitorStateException("attempt to unlock lock, not locked by current thread by node id: "
                    + id + " thread-id: " + threadId);
        }
    }

LuaScript

这个脚本就是在讲解可重入分布式锁原理具体逻辑已经解释过,这里就不再重复分析。

public class LuaScript {
    private LuaScript() {
    }
    /**
     * 可重入分布式锁加锁脚本
     *
     * @return 当且仅当返回 `nil`才表示加锁成功;返回锁剩余过期时间是让客户端感知锁是否成功。
     */
    public static String reentrantLockScript() {
        return "if ((redis.call('exists', KEYS[1]) == 0) " +
                "or (redis.call('hexists', KEYS[1], ARGV[2]) == 1)) then " +
                "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                "return nil; " +
                "end; " +
                "return redis.call('pttl', KEYS[1]);";
    }
    /**
     * 可重入分布式锁解锁脚本
     *
     * @return 当且仅当返回 `nil`才表示解锁成功;
     */
    public static String reentrantUnlockScript() {
        return "if (redis.call('hexists', KEYS[1], ARGV[2]) == 0) then " +
                "return nil;" +
                "end; " +
                "local counter = redis.call('hincrby', KEYS[1], ARGV[2], -1); " +
                "if (counter > 0) then " +
                "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                "return 0; " +
                "else " +
                "redis.call('del', KEYS[1]); " +
                "return 1; " +
                "end; " +
                "return nil;";
    }
}

RedisLockClient

最后,还需要提供一个客户端给方便使用。

@Component
public class RedisLockClient {
    @Autowired
    private StringRedisTemplate redisTemplate;
    /**
     * 获取可重入分布式锁
     * @param name
     * @return
     */
    public Lock getReentrantLock(String name) {
        return new ReentrantDistributedLock(name, redisTemplate);
    }
}

单元测试走一个,验证下分布式锁是否支持可重入。

@Slf4j
@SpringBootTest(classes = RedisApplication.class)
public class RedisLockTest {
    @Autowired
    private RedisLockClient redisLockClient;
    @Test
    public void testTryReentrantLockSuccess() throws InterruptedException {
        Lock lock = redisLockClient.getReentrantLock("order:pay");
        try {
            boolean isLock = lock.tryLock(10, 30, TimeUnit.SECONDS);
            if (!isLock) {
                log.warn("加锁失败");
                return;
            }
            // 重复加锁
            reentrant(lock);
            log.info("业务逻辑执行完成");
        } finally {
            lock.unlock();
        }
    }
    private void reentrant(Lock lock) throws InterruptedException {
        try {
            boolean isLock = lock.tryLock(10, 30, TimeUnit.SECONDS);
            if (!isLock) {
                log.warn("加锁失败");
                return;
            }
            log.info("业务逻辑执行完成");
        } finally {
            lock.unlock();
        }
    }
}

有两个点需要注意。

  1. 释放锁的代码一定要放在 finally{} 块中。否则一旦执行业务逻辑过程中抛出异常,程序就无法执行释放锁的流程。只能干等着锁超时释放。
  2. 加锁的代码应该写在 try {} 代码中,放在 try 外面的话,如果执行加锁异常(客户端网络连接超时),但是实际指令已经发送到服务端并执行,就会导致没有机会执行解锁的代码。

CHaya:“码哥,这个方案确实很王者,大开眼界,接下来的超神版可以实现看门狗自动续期么?”

鉴于篇幅有限,今天就跟大家介绍 Redis 可重入分布式锁王者方案,关注我,下一篇给你分享、超神版分布式锁解决方案。

下期见~


相关文章
|
3月前
|
缓存 Java 开发者
【Spring】原理:Bean的作用域与生命周期
本文将围绕 Spring Bean 的作用域与生命周期展开深度剖析,系统梳理作用域的类型与应用场景、生命周期的关键阶段与扩展点,并结合实际案例揭示其底层实现原理,为开发者提供从理论到实践的完整指导。
543 22
|
存储 缓存 NoSQL
Redis 服务器全方位介绍:从入门到核心原理
Redis是一款高性能内存键值数据库,支持字符串、哈希、列表等多种数据结构,广泛用于缓存、会话存储、排行榜及消息队列。其单线程事件循环架构保障高并发与低延迟,结合RDB和AOF持久化机制兼顾性能与数据安全。通过主从复制、哨兵及集群模式实现高可用与横向扩展,适用于现代应用的多样化场景。合理配置与优化可显著提升系统性能与稳定性。
524 0
|
3月前
|
人工智能 Java 开发者
【Spring】原理解析:Spring Boot 自动配置
Spring Boot通过“约定优于配置”的设计理念,自动检测项目依赖并根据这些依赖自动装配相应的Bean,从而解放开发者从繁琐的配置工作中解脱出来,专注于业务逻辑实现。
1503 0
|
2月前
|
NoSQL Java 网络安全
SpringBoot启动时连接Redis报错:ERR This instance has cluster support disabled - 如何解决?
通过以上步骤一般可以解决由于配置不匹配造成的连接错误。在调试问题时,一定要确保服务端和客户端的Redis配置保持同步一致。这能够确保SpringBoot应用顺利连接到正确配置的Redis服务,无论是单机模式还是集群模式。
313 5
|
2月前
|
XML Java 测试技术
《深入理解Spring》:IoC容器核心原理与实战
Spring IoC通过控制反转与依赖注入实现对象间的解耦,由容器统一管理Bean的生命周期与依赖关系。支持XML、注解和Java配置三种方式,结合作用域、条件化配置与循环依赖处理等机制,提升应用的可维护性与可测试性,是现代Java开发的核心基石。
|
2月前
|
XML Java 应用服务中间件
【SpringBoot(一)】Spring的认知、容器功能讲解与自动装配原理的入门,带你熟悉Springboot中基本的注解使用
SpringBoot专栏开篇第一章,讲述认识SpringBoot、Bean容器功能的讲解、自动装配原理的入门,还有其他常用的Springboot注解!如果想要了解SpringBoot,那么就进来看看吧!
461 2
|
3月前
|
NoSQL Java 调度
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
分布式锁是分布式系统中用于同步多节点访问共享资源的机制,防止并发操作带来的冲突。本文介绍了基于Spring Boot和Redis实现分布式锁的技术方案,涵盖锁的获取与释放、Redis配置、服务调度及多实例运行等内容,通过Docker Compose搭建环境,验证了锁的有效性与互斥特性。
278 0
分布式锁与分布式锁使用 Redis 和 Spring Boot 进行调度锁(不带 ShedLock)
|
4月前
|
Java 关系型数据库 数据库
深度剖析【Spring】事务:万字详解,彻底掌握传播机制与事务原理
在Java开发中,Spring框架通过事务管理机制,帮我们轻松实现了这种“承诺”。它不仅封装了底层复杂的事务控制逻辑(比如手动开启、提交、回滚事务),还提供了灵活的配置方式,让开发者能专注于业务逻辑,而不用纠结于事务细节。
|
3月前
|
存储 缓存 监控
Redis分区的核心原理与应用实践
Redis分区通过将数据分散存储于多个节点,提升系统处理高并发与大规模数据的能力。本文详解分区原理、策略及应用实践,涵盖哈希、范围、一致性哈希等分片方式,分析其适用场景与性能优势,并探讨电商秒杀、物联网等典型用例,为构建高性能、可扩展的Redis集群提供参考。
224 0
|
NoSQL Redis 数据库
用redis实现分布式锁时容易踩的5个坑
云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 近有不少小伙伴投入短视频赛道,也出现不少第三方数据商,为大家提供抖音爬虫数据。 小伙伴们有没有好奇过,这些数据是如何获取的,普通技术小白能否也拥有自己的抖音爬虫呢? 本文会全面解密抖音爬虫的幕后原理,不需要任何编程知识,还请耐心阅读。
用redis实现分布式锁时容易踩的5个坑