扩散模型(Diffusion Model)

简介: 扩散模型(Diffusion Model)

扩散模型(Diffusion Model)是一种基于概率统计和非均衡热力学原理的深度学习生成模型。这类模型最初受到物理中分子扩散过程的启发,应用于机器学习领域时,主要用于学习数据的概率分布,并在此基础上生成新的样本。

扩散模型的核心包含两个主要过程:

  1. 前向扩散过程(Forward Process):这一过程通常是对原始数据逐步添加高斯噪声,从而将清晰的数据点转化为越来越随机的状态,最终达到接近高斯噪声分布的程度。

  2. 逆向扩散过程(Reverse Process):模型被训练来学习如何通过一系列去噪步骤来逆转前向扩散过程,也就是从随机噪声中逐渐重构出清晰的数据样本。

在实践中,扩散模型利用神经网络作为参数化函数,用于估计每个去噪步骤所需的转换概率。特别是在计算机视觉领域,扩散模型已经展现出了强大的能力,能够生成高质量的图像,并在图像合成、图像修复、图像超分辨率等任务中取得显著成果。此外,随着研究的深入,扩散模型也被扩展应用到了音频、文本和多模态数据的生成任务中。例如,Denoising Diffusion Probabilistic Models (DDPM) 和 Denoising Diffusion Implicit Models (DDIM) 是扩散模型家族中的一些重要变体。

目录
相关文章
|
机器学习/深度学习 调度
详解 Diffusion (扩散) 模型
详解 Diffusion (扩散) 模型
1130 0
|
机器学习/深度学习 人工智能
手动实现一个扩散模型DDPM(下)
手动实现一个扩散模型DDPM(下)
1103 2
|
Python
python获取pdf和word文档页数
python获取pdf和word文档页数
999 0
|
2月前
|
测试技术
哪里不对改哪里!全能图像编辑模型Qwen-Image-Edit来啦
Qwen-Image-Edit基于20B Qwen-Image模型,融合视觉语义与外观控制,支持中英文文字精准编辑、风格迁移、IP创作等多重功能,具备SOTA性能,助力低门槛、高精度图像编辑。
1451 23
|
编解码 人工智能 自然语言处理
AIGC基础模型——扩散模型(Diffusion Model)
【1月更文挑战第23天】AIGC基础模型——扩散模型(Diffusion Model)
911 1
AIGC基础模型——扩散模型(Diffusion Model)
|
机器学习/深度学习 自然语言处理 并行计算
扩散模型
本文详细介绍了扩散模型(Diffusion Models, DM),一种在计算机视觉和自然语言处理等领域取得显著进展的生成模型。文章分为四部分:基本原理、处理过程、应用和代码实战。首先,阐述了扩散模型的两个核心过程:前向扩散(加噪)和逆向扩散(去噪)。接着,介绍了训练和生成的具体步骤。最后,展示了模型在图像生成、视频生成和自然语言处理等领域的广泛应用,并提供了一个基于Python和PyTorch的代码示例,帮助读者快速入门。
|
存储 前端开发 JavaScript
Flux 思想
Flux 是一种用于构建用户界面的应用程序架构,由 Facebook 推出。它通过单向数据流和集中管理的状态来提高应用程序的可维护性和可预测性,主要包含四大组件:Dispatcher、Store、View 和 Action。
|
机器学习/深度学习 Python
扩散模型的基本原理
扩散模型的基本原理
630 2
|
机器学习/深度学习 算法 PyTorch
使用Pytorch中从头实现去噪扩散概率模型(DDPM)
在本文中,我们将构建基础的无条件扩散模型,即去噪扩散概率模型(DDPM)。从探究算法的直观工作原理开始,然后在PyTorch中从头构建它。本文主要关注算法背后的思想和具体实现细节。
9309 3
|
机器学习/深度学习 数据采集
详解Diffusion扩散模型:理论、架构与实现
【9月更文挑战第23天】扩散模型(Diffusion Models)是一类基于随机过程的深度学习模型,通过逐步加噪和去噪实现图像生成,在此领域表现优异。模型分正向扩散和反向生成两阶段:前者从真实数据加入噪声至完全噪音,后者则学习从噪声中恢复数据,经由反向过程逐步还原生成清晰图像。其主要架构采用U-net神经网络,实现过程中需数据预处理及高斯噪声添加等步骤,最终通过模型逆向扩散生成新数据,具有广泛应用前景。
1080 0

热门文章

最新文章