数据结构与算法⑮(第四章_下)二叉树OJ(力扣:144,965,104,110,226,100,101,572)(上)

简介: 数据结构与算法⑮(第四章_下)二叉树OJ(力扣:144,965,104,110,226,100,101,572)

144. 二叉树的前序遍历

难度简单

给你二叉树的根节点 root ,返回它节点值的 前序 遍历。

示例 1:

输入:root = [1,null,2,3]

输出:[1,2,3]

示例 2:

输入:root = [ ]

输出:[ ]

示例 3:

输入:root = [1]

输出:[1]

示例 4:


输入:root = [1,2]

输出:[1,2]

示例 5:

输入:root = [1,null,2]

输出:[1,2]

提示:

  • 树中节点数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

进阶:递归算法很简单,你可以通过迭代算法完成吗?

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* preorderTraversal(struct TreeNode* root, int* returnSize){
 
}

解析代码:

ps(迭代算法我们要学了C++之后的高阶数据结构再实现)

int TreeSize(struct TreeNode* root)
{
    if(root==NULL)
    {
        return 0;
    }
    return 1 + TreeSize(root->left) + TreeSize(root->right);
}
 
void _preorderTraversal(struct TreeNode* root,int* array,int* pi) // (函数前面的_代表这个函数的子函数,通常用来递归)
{
    if(root==NULL)
    {
        return;
    }
    array[(*pi)++] = root->val;//注意这里就是要传i的地址的原因(不然每个栈帧都有一个i)
    _preorderTraversal(root->left,array,pi);
    _preorderTraversal(root->right,array,pi);
}
 
int* preorderTraversal(struct TreeNode* root, int* returnSize){
    int size = TreeSize(root);
    int* array=(int*)malloc(sizeof(int)*size);
    int i = 0;
    _preorderTraversal(root,array,&i);
 
    *returnSize=size;
    return array;
}


(写完这题可以去写写二叉树的中序遍历和后序遍历,都是一样的)链接:

94. 二叉树的中序遍历 - 力扣(LeetCode)

145. 二叉树的后序遍历 - 力扣(LeetCode)

965. 单值二叉树

难度简单

如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树。

只有给定的树是单值二叉树时,才返回 true;否则返回 false。

示例 1:


输入:[1,1,1,1,1,null,1]

输出:true

示例 2:

输入:[2,2,2,5,2]

输出:false

提示:

  1. 给定树的节点数范围是 [1, 100]。
  2. 每个节点的值都是整数,范围为 [0, 99] 。
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
 
bool isUnivalTree(struct TreeNode* root){
 
}

解析代码:

bool isUnivalTree(struct TreeNode* root) {
    if (root == NULL)//空结点就返回true
    {
        return true;
    }
    if (root->left && root->val != root->left->val)
    {
        return false;
    }
    if (root->right && root->val != root->right->val)
    {
        return false;
    }
    //走到这就是结点的左右孩子存在时的值都等于父亲的值(符合单值二叉树)
    //返回这个左子树和右子树都是单值二叉树(只要有一个不是就是false)
    return isUnivalTree(root->left) && isUnivalTree(root->right);
}

104. 二叉树的最大深度

难度简单

给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

3

/ \

9 20

/ \

15 7

返回它的最大深度 3 。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
 
int maxDepth(struct TreeNode* root){
 
}

解析代码:

/*int maxDepth(struct TreeNode* root) {
    if (root == NULL)
    {
        return 0;
    }
    return maxDepth(root->left) > maxDepth(root->right) 
           ? maxDepth(root->left) + 1 : maxDepth(root->right) + 1;
}*/  //这样写会有重复的递归计算,  优化:
int maxDepth(struct TreeNode* root) {
    if (root == NULL)
    {
        return 0;
    }
    int leftDepth = maxDepth(root->left);
    int rightDepth = maxDepth(root->right);
    return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}

110. 平衡二叉树

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树 每个节点 的左右两个子树的高度差的绝对值不超过 1 。

示例 1:


输入:root = [3,9,20,null,null,15,7]

输出:true

示例 2:


输入:root = [1,2,2,3,3,null,null,4,4]

输出:false

示例 3:

输入:root = []


输出:true

提示:

  • 树中的节点数在范围 [0, 5000] 内
  • -10^4 <= Node.val <= 10^4
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
bool isBalanced(struct TreeNode* root){
 
}

解析代码:

int maxDepth(struct TreeNode* root) {
    if (root == NULL)
    {
        return 0;
    }
    int leftDepth = maxDepth(root->left);
    int rightDepth = maxDepth(root->right);
    return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}
 
bool isBalanced(struct TreeNode* root){
    if(root == NULL)
    {
         return true;
    }
    //当前树的左右子树高度差不大于1,并且左右子树本身也是平衡树。
    return (abs(maxDepth(root->left) - maxDepth(root->right)) <= 1)
        && isBalanced(root->left) && isBalanced(root->right);
}

数据结构与算法⑮(第四章_下)二叉树OJ(力扣:144,965,104,110,226,100,101,572)(下):https://developer.aliyun.com/article/1513526

目录
相关文章
|
9月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
324 10
 算法系列之数据结构-二叉树
|
11月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
371 12
|
11月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
200 10
|
11月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
554 3
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
362 4
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
1138 8
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
203 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
182 0
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
914 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。