【建议收藏】高并发下的分布式事务:如何选择最优方案?

简介: 本文介绍了分布式事务的三种常见解决方案。在分布式系统中,事务处理变得复杂,需确保ACID特性。TCC(Try-Confirm-Cancel)方案适用于严格资金要求的场景,如银行转账,通过预留、确认和取消步骤确保一致性。可靠消息最终一致性方案适合一致性要求较低的场景,如电商积分处理,通过消息中间件实现最终一致性。最大努力通知方案则用于允许不一致的场景,如数据分析,通过重复通知尽可能达成一致性。选择合适的方案取决于具体应用场景。



Hello,大家好!我是你们的技术小伙伴小米,今天我们一起来聊一聊“分布式事务”这个话题。最近收到不少朋友的留言,说在实际项目中遇到了分布式事务的问题,尤其是在选择合适的方案上感到困惑。今天我就来和大家分享一下常见的分布式事务解决方案,以及它们在不同场景下的应用。

分布式事务概述

在分布式系统中,事务的处理相较于单体应用要复杂得多。由于数据分散在不同的节点上,要确保事务的ACID特性(原子性、一致性、隔离性、持久性)就变得非常困难。为了解决这个问题,业界提出了多种分布式事务解决方案,每种方案都有其适用的场景。

严格资金要求场景:TCC 方案

首先,我们来看一个严格资金要求的场景,例如银行转账系统。在这个场景中,任何错误都会导致严重的后果,因此我们需要一种能够保证绝对一致性的事务处理方案。

什么是 TCC?

TCC(Try-Confirm-Cancel)是一种比较严格的分布式事务解决方案,它将一个事务分为三个阶段:

  • Try 阶段:预留资源或者预处理业务逻辑。
  • Confirm 阶段:确认并提交事务。
  • Cancel 阶段:在出现错误时回滚事务。

实战案例:银行转账

假设我们要实现一个跨行转账的功能,涉及到A银行和B银行的两个独立系统。转账过程中需要确保两边的资金变化是完全一致的。

  • Try 阶段:在A银行冻结转出账户的资金,在B银行预留转入账户的额度。
  • Confirm 阶段:A银行扣减转出账户的资金,B银行增加转入账户的余额。
  • Cancel 阶段:在任意阶段失败时,A银行解冻资金,B银行取消额度预留。

这种方案通过明确的预留、确认和取消步骤,确保了资金操作的绝对一致性。

一般分布式事务场景:可靠消息最终一致性方案

对于一些一致性要求稍低的场景,例如电商系统中的积分处理,我们可以选择可靠消息最终一致性方案。这种方案相对TCC来说,性能开销较小,更加适合高并发环境。

什么是可靠消息最终一致性?

可靠消息最终一致性是通过消息中间件实现的一种方案,其基本思路是:

  • 消息发送:在业务操作成功后发送一条消息。
  • 消息消费:消费者接收到消息后,执行相应的业务操作。
  • 消息确认:消费者处理成功后,确认消息已经被处理。

实战案例:电商积分处理

假设用户在电商平台上完成了一笔订单,我们需要给用户增加相应的积分。

  • 订单服务:订单服务在订单成功后,发送一条增加积分的消息到消息中间件。
  • 积分服务:积分服务接收到消息后,增加用户的积分,并确认消息处理成功。
  • 消息重试:如果积分服务处理失败,消息中间件会自动重试,直到消息被成功处理。

通过这种方式,我们可以确保在高并发环境下,积分数据最终达到一致。

允许不一致场景:最大努力通知方案

在某些场景下,业务对一致性的要求较低,允许存在一定的不一致性。例如在一些数据分析系统中,实时性和一致性要求并不高,此时可以采用最大努力通知方案。

什么是最大努力通知?

最大努力通知是一种相对简单的方案,它通过尽可能多的通知来达到一定的一致性:

  • 事件触发:业务操作完成后,触发通知。
  • 重复通知:在一定时间内,重复发送通知,尽可能保证接收方处理。
  • 超时放弃:超过设定时间后,放弃通知。

实战案例:数据分析系统

假设我们有一个用户行为数据分析系统,需要收集用户的点击行为。

  • 行为记录:用户点击行为发生后,记录行为数据,并触发通知发送到数据分析系统。
  • 数据分析系统:接收到通知后,处理用户行为数据。
  • 重复通知:如果数据分析系统未及时处理,系统会在一定时间内重复发送通知。

这种方案虽然不能保证每次行为数据都被记录,但对于大多数数据分析场景来说,已经足够。

END

在分布式系统中,选择合适的事务处理方案至关重要。不同的方案有其适用的场景和优势:

  • TCC 方案:适用于严格资金要求的场景,保证绝对一致性。
  • 可靠消息最终一致性方案:适用于一般分布式事务场景,保证最终一致性。
  • 最大努力通知方案:适用于允许不一致的场景,保证尽可能一致。

希望今天的分享能对大家有所帮助,如果你在实际项目中遇到分布式事务的问题,欢迎留言或私信,我会尽力解答你的疑惑!

记得关注小米的公众号,获取更多技术分享哦!

我们下期见,拜拜~

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关文章
|
3月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
|
6月前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
1889 7
|
7月前
|
数据采集 Web App开发 监控
如何用Pyppeteer打造高并发无头浏览器采集方案
本文从电商行业数据采集痛点出发,结合 Pyppeteer 高并发无头浏览器技术,打造可配置代理的高效采集方案。通过爬虫代理突破 IP 限制,模拟真实用户行为,实现 Amazon 特价商品数据的稳定抓取与分析。代码示例详细展示了代理集成、并发控制及数据处理流程,实验验证效率提升超 4 倍。该方案助力商业决策、竞品分析,并支持技术扩展与创新应用。
302 13
如何用Pyppeteer打造高并发无头浏览器采集方案
|
7月前
|
人工智能 负载均衡 Java
Spring AI Alibaba 发布企业级 MCP 分布式部署方案
本文介绍了Spring AI Alibaba MCP的开发与应用,旨在解决企业级AI Agent在分布式环境下的部署和动态更新问题。通过集成Nacos,Spring AI Alibaba实现了流量负载均衡及节点变更动态感知等功能。开发者可方便地将企业内部业务系统发布为MCP服务或开发自己的AI Agent。文章详细描述了如何通过代理应用接入存量业务系统,以及全新MCP服务的开发流程,并提供了完整的配置示例和源码链接。未来,Spring AI Alibaba计划结合Nacos3的mcp-registry与mcp-router能力,进一步优化Agent开发体验。
2646 14
|
7月前
|
NoSQL 算法 安全
redis分布式锁在高并发场景下的方案设计与性能提升
本文探讨了Redis分布式锁在主从架构下失效的问题及其解决方案。首先通过CAP理论分析,Redis遵循AP原则,导致锁可能失效。针对此问题,提出两种解决方案:Zookeeper分布式锁(追求CP一致性)和Redlock算法(基于多个Redis实例提升可靠性)。文章还讨论了可能遇到的“坑”,如加从节点引发超卖问题、建议Redis节点数为奇数以及持久化策略对锁的影响。最后,从性能优化角度出发,介绍了减少锁粒度和分段锁的策略,并结合实际场景(如下单重复提交、支付与取消订单冲突)展示了分布式锁的应用方法。
601 3
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
11月前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
341 1
|
缓存 NoSQL Java
Spring Boot中的分布式缓存方案
Spring Boot提供了简便的方式来集成和使用分布式缓存。通过Redis和Memcached等缓存方案,可以显著提升应用的性能和扩展性。合理配置和优化缓存策略,可以有效避免常见的缓存问题,保证系统的稳定性和高效运行。
383 3
|
NoSQL 安全 PHP
hyperf-wise-locksmith,一个高效的PHP分布式锁方案
`hyperf-wise-locksmith` 是 Hyperf 框架下的互斥锁库,支持文件锁、分布式锁、红锁及协程锁,有效防止分布式环境下的竞争条件。本文介绍了其安装、特性和应用场景,如在线支付系统的余额扣减,确保操作的原子性。
215 4

热门文章

最新文章