【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN

简介: 【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN

同上一篇文章中的搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。本文,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。

导入所需的包或模块。

import collections
import os
import random
import tarfile
import torch
from torch import nn
import torchtext.vocab as Vocab
import torch.utils.data as Data
import sys
import d2lzh_pytorch as d2l
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DATA_ROOT = "./Datasets"

1 文本情感分类数据

我们使用斯坦福的IMDb数据集(Stanford’s Large Movie Review Dataset)作为文本情感分类的数据集 。这个数据集分为训练和测试用的两个数据集,分别包含25,000条从IMDb下载的关于电影的评论。在每个数据集中,标签为“正面”和“负面”的评论数量相等。

1.1 读取数据

首先下载数据集到DATA_ROOT路径下,然后解压。

关注GZH:阿旭算法与机器学习,回复:“文本情感分类”即可获取本文数据集与项目文档,欢迎共同学习交流

fname = os.path.join(DATA_ROOT, "aclImdb_v1.tar.gz")
if not os.path.exists(os.path.join(DATA_ROOT, "aclImdb")):
    print("从压缩包解压...")
    with tarfile.open(fname, 'r') as f:
        f.extractall(DATA_ROOT)

接下来,读取训练数据集和测试数据集。每个样本是一条评论及其对应的标签:1表示“正面”,0表示“负面”。

from tqdm import tqdm
def read_imdb(folder='train', data_root="./Datasets/aclImdb"): 
    data = []
    for label in ['pos', 'neg']:
        folder_name = os.path.join(data_root, folder, label)
        for file in tqdm(os.listdir(folder_name)):
            with open(os.path.join(folder_name, file), 'rb') as f:
                review = f.read().decode('utf-8').replace('\n', '').lower()
                data.append([review, 1 if label == 'pos' else 0])
    random.shuffle(data)
    return data
train_data, test_data = read_imdb('train'), read_imdb('test')

1.2 预处理数据

我们需要对每条评论做分词,从而得到分好词的评论。这里定义的get_tokenized_imdb函数使用最简单的方法:基于空格进行分词。

def get_tokenized_imdb(data):
    """
    data: list of [string, label]
    """
    def tokenizer(text):
        return [tok.lower() for tok in text.split(' ')]
    return [tokenizer(review) for review, _ in data]

现在,我们可以根据分好词的训练数据集来创建词典了。我们在这里过滤掉了出现次数少于5的词。

def get_vocab_imdb(data):
    tokenized_data = get_tokenized_imdb(data)
    counter = collections.Counter([tk for st in tokenized_data for tk in st])
    return Vocab.Vocab(counter, min_freq=5)
vocab = get_vocab_imdb(train_data)
'# words in vocab:', len(vocab)

输出:

('# words in vocab:', 46151)

因为每条评论长度不一致所以不能直接组合成小批量,我们定义preprocess_imdb函数对每条评论进行分词,并通过词典转换成词索引,然后通过截断或者补0来将每条评论长度固定成500。

def preprocess_imdb(data, vocab):
    max_l = 500  # 将每条评论通过截断或者补0,使得长度变成500
    def pad(x):
        return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))
    tokenized_data = get_tokenized_imdb(data)
    features = torch.tensor([pad([vocab.stoi[word] for word in words]) for words in tokenized_data])
    labels = torch.tensor([score for _, score in data])
    return features, labels

1.3 创建数据迭代器

现在,我们创建数据迭代器。每次迭代将返回一个小批量的数据。

batch_size = 64
train_set = Data.TensorDataset(*preprocess_imdb(train_data, vocab))
test_set = Data.TensorDataset(*preprocess_imdb(test_data, vocab))
train_iter = Data.DataLoader(train_set, batch_size, shuffle=True)
test_iter = Data.DataLoader(test_set, batch_size)

打印第一个小批量数据的形状以及训练集中小批量的个数。

for X, y in train_iter:
    print('X', X.shape, 'y', y.shape)
    break
'#batches:', len(train_iter)

输出:

X torch.Size([64, 500]) y torch.Size([64])
('#batches:', 391)

2 使用循环神经网络的模型

在这个模型中,每个词先通过嵌入层得到特征向量。然后,我们使用双向循环神经网络对特征序列进一步编码得到序列信息。最后,我们将编码的序列信息通过全连接层变换为输出。具体来说,我们可以将双向长短期记忆在最初时间步和最终时间步的隐藏状态连结,作为特征序列的表征传递给输出层分类。在下面实现的BiRNN类中,Embedding实例即嵌入层,LSTM实例即为序列编码的隐藏层,Linear实例即生成分类结果的输出层。

class BiRNN(nn.Module):
    def __init__(self, vocab, embed_size, num_hiddens, num_layers):
        super(BiRNN, self).__init__()
        self.embedding = nn.Embedding(len(vocab), embed_size)
        # bidirectional设为True即得到双向循环神经网络
        self.encoder = nn.LSTM(input_size=embed_size, 
                                hidden_size=num_hiddens, 
                                num_layers=num_layers,
                                bidirectional=True)
        # 初始时间步和最终时间步的隐藏状态作为全连接层输入
        self.decoder = nn.Linear(4*num_hiddens, 2)
    def forward(self, inputs):
        # inputs的形状是(批量大小, 词数),因为LSTM需要将序列长度(seq_len)作为第一维,所以将输入转置后
        # 再提取词特征,输出形状为(词数, 批量大小, 词向量维度)
        embeddings = self.embedding(inputs.permute(1, 0))
        # rnn.LSTM只传入输入embeddings,因此只返回最后一层的隐藏层在各时间步的隐藏状态。
        # outputs形状是(词数, 批量大小, 2 * 隐藏单元个数)
        outputs, _ = self.encoder(embeddings) # output, (h, c)
        # 连结初始时间步和最终时间步的隐藏状态作为全连接层输入。它的形状为
        # (批量大小, 4 * 隐藏单元个数)。
        encoding = torch.cat((outputs[0], outputs[-1]), -1)
        outs = self.decoder(encoding)
        return outs

创建一个含两个隐藏层的双向循环神经网络。

embed_size, num_hiddens, num_layers = 100, 100, 2
net = BiRNN(vocab, embed_size, num_hiddens, num_layers)

2.1 加载预训练的词向量

由于情感分类的训练数据集并不是很大,为应对过拟合,我们将直接使用在更大规模语料上预训练的词向量作为每个词的特征向量。这里,我们为词典vocab中的每个词加载100维的GloVe词向量。

glove_vocab = Vocab.GloVe(name='6B', dim=100, cache=os.path.join(DATA_ROOT, "glove"))

然后,我们将用这些词向量作为评论中每个词的特征向量。注意,预训练词向量的维度需要与创建的模型中的嵌入层输出大小embed_size一致。此外,在训练中我们不再更新这些词向量。

def load_pretrained_embedding(words, pretrained_vocab):
    """从预训练好的vocab中提取出words对应的词向量"""
    embed = torch.zeros(len(words), pretrained_vocab.vectors[0].shape[0]) # 初始化为0
    oov_count = 0 # out of vocabulary
    for i, word in enumerate(words):
        try:
            idx = pretrained_vocab.stoi[word]
            embed[i, :] = pretrained_vocab.vectors[idx]
        except KeyError:
            oov_count += 1
    if oov_count > 0:
        print("There are %d oov words." % oov_count)
    return embed
net.embedding.weight.data.copy_(
    load_pretrained_embedding(vocab.itos, glove_vocab))
net.embedding.weight.requires_grad = False # 直接加载预训练好的, 所以不需要更新它

输出:

There are 21202 oov words.

2.2 训练并评价模型

这时候就可以开始训练模型了。

lr, num_epochs = 0.01, 5
# 要过滤掉不计算梯度的embedding参数
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()), lr=lr)
loss = nn.CrossEntropyLoss()
d2l.train(train_iter, test_iter, net, loss, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.5759, train acc 0.666, test acc 0.832, time 250.8 sec
epoch 2, loss 0.1785, train acc 0.842, test acc 0.852, time 253.3 sec
epoch 3, loss 0.1042, train acc 0.866, test acc 0.856, time 253.7 sec
epoch 4, loss 0.0682, train acc 0.888, test acc 0.868, time 254.2 sec
epoch 5, loss 0.0483, train acc 0.901, test acc 0.862, time 251.4 sec

2.3 使用模型进行预测

最后,定义预测函数。

def predict_sentiment(net, vocab, sentence):
    """sentence是词语的列表"""
    device = list(net.parameters())[0].device
    sentence = torch.tensor([vocab.stoi[word] for word in sentence], device=device)
    label = torch.argmax(net(sentence.view((1, -1))), dim=1)
    return 'positive' if label.item() == 1 else 'negative'

下面使用训练好的模型对两个简单句子的情感进行分类。

predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'great']) # positive
predict_sentiment(net, vocab, ['this', 'movie', 'is', 'so', 'bad']) # negative

总结

  • 文本分类把一段不定长的文本序列变换为文本的类别。它属于词嵌入的下游应用。
  • 可以应用预训练的词向量和循环神经网络对文本的情感进行分类。
相关文章
|
3月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
412 0
|
2月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
357 0
|
4月前
|
机器学习/深度学习 数据采集 运维
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
匹配网络是一种基于度量的元学习方法,通过计算查询样本与支持集样本的相似性实现分类。其核心依赖距离度量函数(如余弦相似度),并引入注意力机制对特征维度加权,提升对关键特征的关注能力,尤其在处理复杂或噪声数据时表现出更强的泛化性。
272 6
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
|
3月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
117 1
|
3月前
|
安全 网络性能优化 网络虚拟化
网络交换机分类与功能解析
接入交换机(ASW)连接终端设备,提供高密度端口与基础安全策略;二层交换机(LSW)基于MAC地址转发数据,构成局域网基础;汇聚交换机(DSW)聚合流量并实施VLAN路由、QoS等高级策略;核心交换机(CSW)作为网络骨干,具备高性能、高可靠性的高速转发能力;中间交换机(ISW)可指汇聚层设备或刀片服务器内交换模块。典型流量路径为:终端→ASW→DSW/ISW→CSW,分层架构提升网络扩展性与管理效率。(238字)
1050 0
|
3月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
195 0
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
基于Pytorch 在昇腾上实现GCN图神经网络
本文详细讲解了如何在昇腾平台上使用PyTorch实现图神经网络(GCN)对Cora数据集进行分类训练。内容涵盖GCN背景、模型特点、网络架构剖析及实战分析。GCN通过聚合邻居节点信息实现“卷积”操作,适用于非欧氏结构数据。文章以两层GCN模型为例,结合Cora数据集(2708篇科学出版物,1433个特征,7种类别),展示了从数据加载到模型训练的完整流程。实验在NPU上运行,设置200个epoch,最终测试准确率达0.8040,内存占用约167M。
基于Pytorch 在昇腾上实现GCN图神经网络
|
7月前
|
机器学习/深度学习 算法 PyTorch
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
357 16
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
|
10月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
553 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
基于Pytorch Gemotric在昇腾上实现GAT图神经网络
本实验基于昇腾平台,使用PyTorch实现图神经网络GAT(Graph Attention Networks)在Pubmed数据集上的分类任务。内容涵盖GAT网络的创新点分析、图注意力机制原理、多头注意力机制详解以及模型代码实战。实验通过两层GAT网络对Pubmed数据集进行训练,验证模型性能,并展示NPU上的内存使用情况。最终,模型在测试集上达到约36.60%的准确率。

推荐镜像

更多