Python多进程:如何在不依赖Queue的情况下传递结果

简介: 本文探讨了在Python中使用多进程技术采集抖音短视频数据时,如何在不依赖队列(Queue)的情况下传递结果。文章首先介绍了多进程提高数据采集效率的背景,然后指出了队列在处理大量数据时可能成为性能瓶颈,并增加了系统复杂性。作为解决方案,提出了使用管道、共享内存和临时文件等替代方法。文章通过一个实战案例,详细演示了如何配置爬虫代理、设置请求头、实现定时器装饰器、抓取视频数据以及通过管道在子进程间传递结果。最后,文章总结了使用这些替代方案可以有效提高数据采集的效率和可靠性。

爬虫代理.jpg

随着数据的爆炸式增长,网络爬虫成为获取信息的强大工具。在爬取大量数据时,多进程技术可以显著提高效率。然而,如何在多进程中传递结果,而不依赖Queue,成为了一个值得探讨的问题。本文将以采集抖音短视频为案例,详尽讲解如何在Python中实现这一目标。

文章目录

  1. 简介
  2. 多进程与Queue的局限性
  3. 替代方案:使用管道、共享内存和临时文件
  4. 实战案例:采集抖音短视频
  5. 结论

1. 简介

在爬虫技术中,多进程可以显著提高数据采集效率。然而,传统的Queue在某些场景下存在局限性。本文将探讨如何在不依赖Queue的情况下,实现多进程间的数据传递。

2. 多进程与Queue的局限性

Queue是Python多进程模块提供的一种进程间通信机制,但它有以下局限性:

  • 性能瓶颈:在大量数据传递时,Queue可能成为性能瓶颈。
  • 复杂性:在复杂的多进程架构中,Queue的管理和维护较为复杂。

3. 替代方案

为了解决这些问题,我们可以使用以下替代方案:

  • 管道(Pipe):用于进程间的双向通信。
  • 共享内存(Shared Memory):通过共享变量实现数据传递。
  • 临时文件:将数据写入临时文件,由主进程读取。

4. 实战案例:采集抖音短视频

环境配置

在开始之前,我们需要配置爬虫代理IP和设置useragent及cookie,以提高爬虫的成功率。本文使用的爬虫代理服务为亿牛云。

代码实现

import multiprocessing
import requests
import json
import time
from multiprocessing import Pipe, Process
from bs4 import BeautifulSoup

# 代理配置 亿牛云爬虫代理加强版
proxy_host = "代理域名"
proxy_port = "代理端口"
proxy_user = "代理用户名"
proxy_pass = "代理密码"
proxy = {
   
   
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}"
}

# User-Agent 和 Cookie
headers = {
   
   
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
    "Cookie": "your_cookie_here"
}

def timer(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        elapsed_time = end_time - start_time
        return result, elapsed_time
    return wrapper

@timer
def fetch_video_data(video_url):
    response = requests.get(video_url, headers=headers, proxies=proxy)
    soup = BeautifulSoup(response.content, 'html.parser')
    video_data = soup.find('script', {
   
   'type': 'application/json'}).string
    return json.loads(video_data)

def worker(video_url, conn):
    result, elapsed_time = fetch_video_data(video_url)
    conn.send((result, elapsed_time))
    conn.close()

def main():
    video_urls = ["https://www.douyin.com/video/1", "https://www.douyin.com/video/2"]
    processes = []
    parent_connections = []

    for url in video_urls:
        parent_conn, child_conn = Pipe()
        p = Process(target=worker, args=(url, child_conn))
        processes.append(p)
        parent_connections.append(parent_conn)
        p.start()

    for p in processes:
        p.join()

    for parent_conn in parent_connections:
        result, elapsed_time = parent_conn.recv()
        print(f"Video Data: {result}")
        print(f"Elapsed Time: {elapsed_time}")

if __name__ == '__main__':
    main()

代码详解

  1. 代理配置:设置爬虫代理IP,保证爬虫能够顺利访问目标网站。
  2. 请求头设置:通过设置User-Agent和Cookie,提高请求的成功率。
  3. 定时器装饰器:测量函数执行时间。
  4. 数据抓取函数:使用requests库抓取视频数据,并解析HTML内容。
  5. 子进程函数:每个子进程独立抓取视频数据,并通过管道发送结果。
  6. 主进程函数:创建多个子进程,并收集每个子进程的结果。

5. 结论

通过本文的示例,我们展示了如何在Python中使用多进程技术,并在不依赖Queue的情况下传递结果。采用管道、共享内存或临时文件等替代方案,可以有效地解决Queue的局限性。在实际应用中,根据具体需求选择合适的方案,能够显著提高数据采集的效率和可靠性。

相关文章
|
5月前
|
人工智能 数据可视化 调度
【三桥君】如何画前趋图?如何正确绘制前趋图,以清晰地展示语句或进程之间的依赖关系?
本文AI专家三桥君系统介绍了前趋图(Precedence Graph)这一可视化工具。前趋图作为有向无环图,能清晰展示任务间的执行顺序和依赖关系。三桥君详细阐述了前趋图的基本概念、绘制步骤(包括任务识别、依赖分析、节点绘制等),并通过实例展示了简单和复杂两种场景下的应用。同时指出前趋图在程序优化、进程调度和任务管理等领域的重要价值,强调其能有效避免逻辑错误、优化资源分配。三桥君认为掌握前趋图的绘制方法对提升程序性能和项目管理效率具有重要意义。
195 0
|
3月前
|
异构计算 Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
374 1
|
开发者 Python
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
574 159
|
3月前
|
人工智能 Shell Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
247 0
|
4月前
|
数据处理 开发工具 开发者
requirement.txt 管理python包依赖
在 Python 项目中,`requirements.txt` 用于记录依赖库及其版本,便于环境复现。本文介绍了多种生成该文件的方法:基础方法使用 `pip freeze`,进阶方法使用 `pipreqs`,专业方法使用 `poetry` 或 `pipenv`,以及手动维护方式。每种方法适用不同场景,涵盖从简单导出到复杂依赖管理,并提供常见问题的解决方案,帮助开发者高效生成精准的依赖列表,确保项目环境一致性。
1397 4
|
5月前
|
监控 编译器 Python
如何利用Python杀进程并保持驻留后台检测
本教程介绍如何使用Python编写进程监控与杀进程脚本,结合psutil库实现后台驻留、定时检测并强制终止指定进程。内容涵盖基础杀进程、多进程处理、自动退出机制、管理员权限启动及图形界面设计,并提供将脚本打包为exe的方法,适用于需持续清理顽固进程的场景。
|
8月前
|
存储 缓存 文件存储
uv安装python及其依赖的加速方法
国内在使用uv的时候,可能会涉及到装python的速度太慢的问题,为了解决这个问题,可以使用`UV_PYTHON_INSTALL_MIRROR`这个环境变量。除此以外,对于多人协作场景,`UV_CACHE_DIR`也是一个有用的环境变量。本文会介绍这两个变量。
6039 10
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。

热门文章

最新文章

推荐镜像

更多