Spring Cloud全解析:负载均衡算法

简介: 本文介绍了负载均衡的两种方式:集中式负载均衡和进程内负载均衡,以及常见的负载均衡算法,包括轮询、随机、源地址哈希、加权轮询、加权随机和最小连接数等方法,帮助读者更好地理解和应用负载均衡技术。

负载均衡算法

集中式负载均衡

在服务的消费方和提供方之间使用独立的LB设施(可以是硬件,如F5,也可以是软件,如Nginx),由该设施负责把访问请求通过某种策略转发至服务的提供方

进程内负载均衡

将LB逻辑集成到消费方,消费方从服务注册中心获知有哪些地址可用,然后自己再从这些地址中选择出一个合适的服务器,如ribbon

算法

常见的负载均衡算法有以下几种

轮询(Round Robin)法,轮询很容易理解,将请求按顺序轮流的分配到后端服务器上,它均衡的对待后端每一台服务器,而不关心服务器实际的连接数和当前的系统负载。

随机(Random)法,通过系统随机函数,根据后端服务器列表的大小值,来随机选取其中一台进行访问,由概率统计的理论可以得知,随着调用量的增大,其实际效果越来越接近于平均分配流量到每一台后端服务器,也就是轮询的效果。

源地址哈希(Hash)法,源地址哈希的思想是获取客户端访问的ip地址值,通过哈希函数计算得到一个数值,用该数值对服务器列表的大小进行取模运算,得到的结果便是要访问的服务器的序号。采用哈希法进行负载均衡,同一ip地址的客户端,当后端服务器列表不变的时候,它每次都会被映射到同一台后端服务器进行访问。

加权轮询(Weight Round Robin)法,不同的后端服务器,可能机器的配置和系统当前的负载并不相同,因此他们抗压能力也不尽相同,给配置高负载低的机器配置更高的权重,让其处理更多的请求,而低配置负载高的机器,则给其分配较低的权重,降低其系统负载,加权轮询能很好的处理这一问题,并将请求顺序且按照权重分配到后端

加权随机(Weight Random)法,与加权轮询法类似,加权随机法也根据后端服务器不同的配置和负载情况,配置不同的权重,不同的是,其实按照权重来随机选取服务器,而非顺序。

最小连接数(Least Connections)法,最小连接数算法比较灵活和智能,由于后端服务器配置不尽相同,对于请求的处理有快有慢,它正是根据后端服务器当前的连接情况,动态的选取其中一台当前积压连接数最少的服务器,来处理当前请求,尽可能的提高后端服务器的利用效率,将负载合理的分流到每一台机器。


转载来源:https://juejin.cn/post/7410624782419492918

相关文章
|
2月前
|
XML Java 数据格式
《深入理解Spring》:AOP面向切面编程深度解析
Spring AOP通过代理模式实现面向切面编程,将日志、事务等横切关注点与业务逻辑分离。支持注解、XML和编程式配置,提供五种通知类型及丰富切点表达式,助力构建高内聚、低耦合的可维护系统。
|
2月前
|
前端开发 Java 微服务
《深入理解Spring》:Spring、Spring MVC与Spring Boot的深度解析
Spring Framework是Java生态的基石,提供IoC、AOP等核心功能;Spring MVC基于其构建,实现Web层MVC架构;Spring Boot则通过自动配置和内嵌服务器,极大简化了开发与部署。三者层层演进,Spring Boot并非替代,而是对前者的高效封装与增强,适用于微服务与快速开发,而深入理解Spring Framework有助于更好驾驭整体技术栈。
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
937 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
3月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
559 1
|
3月前
|
算法 搜索推荐 Java
贪心算法:部分背包问题深度解析
该Java代码基于贪心算法求解分数背包问题,通过按单位价值降序排序,优先装入高价值物品,并支持部分装入。核心包括冒泡排序优化、分阶段装入策略及精度控制,体现贪心选择性质,适用于可分割资源的最优化场景。
342 1
贪心算法:部分背包问题深度解析
|
3月前
|
Java 数据库 数据安全/隐私保护
Spring Boot四层架构深度解析
本文详解Spring Boot四层架构(Controller-Service-DAO-Database)的核心思想与实战应用,涵盖职责划分、代码结构、依赖注入、事务管理及常见问题解决方案,助力构建高内聚、低耦合的企业级应用。
959 1
|
3月前
|
缓存 安全 Java
Spring Security通用权限管理模型解析
Spring Security作为Spring生态的核心安全框架,结合RBAC与ACL权限模型,基于IoC与AOP构建灵活、可扩展的企业级权限控制体系,涵盖认证、授权流程及数据库设计、性能优化等实现策略。
304 0
|
3月前
|
缓存 安全 Java
Spring Security权限管理解析
Spring Security是Spring生态中的核心安全框架,采用认证与授权分离架构,提供高度可定制的权限管理方案。其基于过滤器链实现认证流程,通过SecurityContextHolder管理用户状态,并结合RBAC模型与动态权限决策,支持细粒度访问控制。通过扩展点如自定义投票器、注解式校验与前端标签,可灵活适配多租户、API网关等复杂场景。结合缓存优化与无状态设计,适用于高并发与前后端分离架构。
340 0
|
3月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用

热门文章

最新文章

推荐镜像

更多
  • DNS