Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce

章节内容

上一节我们完成了如下的内容:


编写一个 SQL 脚本生成数据

启动我们的依赖服务:HDFS、Hive、YARN

Sqoop 将数据 全量 导入 Hive

查看MapReduce状态、查看HDFS结果

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

注意事项

Apache Sqoop 于 2021 年 6 月迁入 Attic。

Apache Sqoop 的使命是创建和维护与 Apache Hadoop 和结构化数据存储相关的大规模数据传输软件。

虽然项目已经可能过时,但是如果你的时间充裕的话,可以适当地学习一下,可能会对你有一定的帮助的!!!


部分导入: --query

执行脚本

sqoop import \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password [email protected] \
--target-dir /root \
--append \
-m 1 \
--fields-terminated-by "\t" \
--query 'select gname, serialNumber, price, stock_number,
create_time from goodtbl where price>88 and $CONDITIONS;'

上述参数的解释:

  • 查询语句的where中必须包含 ‘$CONDITIONS’
  • 如果query后使用双引号 则 $CONDITIONS 前必须加转移符号,防止shell认为是自己的变量

分配任务

可以观察到 Sqoop 开始了 MapReduce 的任务

等待执行

此时任务已经开始分配了 Map -> Reduce

查看结果

可以看到任务执行完毕

部分导入: 指定列

执行脚本

sqoop import \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password [email protected] \
--target-dir /root \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns gname,serialNumber,price \
--table goodtbl

上述参数的解释:

  • columns中如果涉及到多个列,用逗号分隔,不能添加空格!!!

分配任务

与上述的内容一致,就不放重复的内容了,只截取部分。

部分导入: --where

执行脚本

sqoop import \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password [email protected] \
--target-dir /root \
--delete-target-dir \
-m 1 \
--fields-terminated-by "\t" \
--table goodtbl \
--where "price>=68"

分配任务

与上述一致,内容结果等基本重复,也不放了。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
862 43
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
325 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
5月前
|
SQL
SQL如何只让特定列中只显示一行数据
SQL如何只让特定列中只显示一行数据
|
5月前
|
SQL
SQL中如何删除指定查询出来的数据
SQL中如何删除指定查询出来的数据
|
5月前
|
SQL 关系型数据库 MySQL
SQL如何对不同表的数据进行更新
本文介绍了如何将表A的Col1数据更新到表B的Col1中,分别提供了Microsoft SQL和MySQL的实现方法,并探讨了多表合并后更新的优化方式,如使用MERGE语句提升效率。适用于数据库数据同步与批量更新场景。
|
9月前
|
XML 存储 分布式计算
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
1084 70
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
528 6
|
SQL 分布式计算 监控
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比
218 3
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
288 5
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
175 4