MySQL战记:Count( *)实现之谜与计数策略的选择

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 本文深入探讨了MySQL中`count(*)`的不同实现方式,特别是MyISAM和InnoDB引擎的区别,以及各种计数方法的性能比较。同时,文章分析了使用缓存系统(如Redis)与数据库保存计数的优劣,并强调了在高并发场景下保持数据一致性的挑战。

在本篇文章中,我们将深度探讨这些问题,解析MySQL中count(*)的不同实现方式,比较各类计数方法的性能,以及讨论缓存系统与数据库在保存计数方面的优劣。希望你能在这个探索过程中收获启示和乐趣。

首先来看一下这张思维导图,对本文内容有个简单的认识。

count(*) 的实现方式

在不同的 MySQL 引擎中,count() 有不同的实现方式,这里讨论的是没有过滤条件的 count()。

  • MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高;如果加了 where 条件的话,MyISAM 表也是不能返回得这么快的。
  • 而 InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

为什么 InnoDB 不跟 MyISAM 一样,也把数字存起来呢?

这是因为即使是在同一个时刻的多个查询,由于多版本并发控制(MVCC)的原因,InnoDB 表“应该返回多少行”也是不确定的。

如下案例所示,最后在同一时刻三个会话查询表t的总行数结果不同。

这和 InnoDB 的事务设计有关系,可重复读是它默认的隔离级别,在代码上就是通过多版本并发控制,也就是 MVCC 来实现的。每一行记录都要判断自己是否对这个会话可见,因此对于 count(*) 请求来说,InnoDB 只好把数据一行一行地读出依次判断,可见的行才能够用于计算“基于这个查询”的表的总行数。

虽然在 InnoDB 引擎中执行 count(*) 执行需要逐行读取,但是内部还是做了查询优化。 InnoDB 是索引组织表,主键索引树的叶子节点是数据,而二级索引树的叶子节点是主键值。所以,普通索引树比主键索引树小很多。对于 count(*) 这样的操作,遍历哪个索引树得到的结果逻辑上都是一样的。因此,MySQL 优化器会找到最小的那棵树来遍历。在保证逻辑正确的前提下,尽量减少扫描的数据量,是数据库系统设计的通用法则之一。

除了执行 count(*) 命令得到数据行数,我们还使用过 show table status  命令,该命令用于显示表中当前有多少行,但是需要注意的是,该命令得到的结果是通过采样来估算的,官方文档说误差可能达到 40% 到 50%。所以,show table status 命令显示的行数也不能直接使用。

总结

  • MyISAM 表虽然 count(*) 很快,但是不支持事务;
  • show table status 命令虽然返回很快,但是不准确;
  • InnoDB 表直接 count(*) 会遍历全表,虽然结果准确,但会导致性能问题。

不同的 count 用法

分析 count(*)、count(主键 id)、count(字段) 和 count(1) 等不同用法的性能,有哪些差别?

count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是 NULL,累计值就加 1,否则不加。最后返回累计值。

所以,count(*)、count(主键 id) 和 count(1) 都表示返回满足条件的结果集的总行数;而 count(字段),则表示返回满足条件的数据行里面,参数“字段”不为 NULL 的总个数。

对于 count(主键 id) 来说,InnoDB 引擎会遍历整张表,把每一行的 id 值都取出来,返回给 server 层。server 层拿到 id 后,判断是不可能为空的,就按行累加。

count(主键 id) 不会走主键索引,因为普通索引树比主键索引树小很多。假设表中有多个普通索引树,则由优化器来决定走哪个索引。

对于 count(1) 来说,InnoDB 引擎遍历整张表,但不取值。server 层对于返回的每一行,放一个数字“1”进去,判断是不可能为空的,按行累加。

单看这两个用法的差别的话,你能对比出来,count(1) 执行得要比 count(主键 id) 快。因为从引擎返回 id 会涉及到解析数据行,以及拷贝字段值的操作。

对于 count(字段) 来说:

  1. 如果这个“字段”是定义为 not null 的话,一行行地从记录里面读出这个字段,判断不能为 null,按行累加;
  2. 如果这个“字段”定义允许为 null,那么执行的时候,判断到有可能是 null,还要把值取出来再判断一下,不是 null 才累加。

count(字段) 需要查询出该字段值,只能通过聚簇索引树,所以效率最差。

但是 count(\*) 是例外,并不会把全部字段取出来,而是专门做了优化,不取值。count(*) 肯定不是 null,直接按行累加。

主键 ID肯定非空,为什么优化器不能像优化 count()那样优化count(主键ID) 呢?答案是没必要,不做重复优化,推荐使用 count()。

根据上述分析,按照效率排序的话,count(字段)<count(主键 id)<count(1)≈count(*),所以我建议你,尽量使用 count(*)

有些文章说 count() 性能差,用词不恰当,难道其他几种计数方式就不差了,注意是计数性能差,而不是count()差。关于计数性能差,可以增加缓存,比如说 redis缓存或者本地缓存,但是不能保证完全实时一致。

用缓存系统保存计数

对于更新很频繁的库来说,你可能会第一时间想到,用缓存系统来支持。

你可以用一个 Redis 服务来保存这个表的总行数。这个表每被插入一行 Redis 计数就加 1,每被删除一行 Redis 计数就减 1。这种方式下,读和更新操作都很快,但你再想一下这种方式存在什么问题吗?

没错,缓存系统可能会丢失更新。

Redis 的数据不能永久地留在内存里,所以你会找一个地方把这个值定期地持久化存储起来。但即使这样,仍然可能丢失更新。试想如果刚刚在数据表中插入了一行,Redis 中保存的值也加了 1,然后 Redis 异常重启了,重启后你要从存储 redis 数据的地方把这个值读回来,而刚刚加 1 的这个计数操作却丢失了。

当然了,这还是有解的。比如,Redis 异常重启以后,到数据库里面单独执行一次 count(*) 获取真实的行数,再把这个值写回到 Redis 里就可以了。异常重启毕竟不是经常出现的情况,这一次全表扫描的成本,还是可以接受的。

但实际上,将计数保存在缓存系统中的方式,还不只是丢失更新的问题。即使 Redis 正常工作,这个值还是逻辑上不精确的

Redis 和 MySQL 是两个独立的数据源,我们需要解决并发环境下数据不一致的问题,一般我们都会先更新数据库,再删缓存。

我们查询如下两个时序图:

会话A在 T2时刻执行了插入操作,在 T3时刻会话B读取缓存中的计数,那么此时读取到的计数和会话A事务结束后读取到的计数就会发生不一致。

如果在会话A中调整更新计数操作和插入操作的顺序,那么是否会有所好转呢?

答案还是不行。虽然在 T3 时刻会话B 可以查询到最新的计数,但是无法获取到待插入的数据R。

因为 Redis 和 MySQL 是不同的存储构成的系统,不支持分布式事务,所以没法保证计数的精确性。

在数据库保存计数

根据上面的分析,用缓存系统保存计数有丢失数据和计数不精确的问题。那么,如果我们把这个计数直接放到数据库里单独的一张计数表 C 中,又会怎么样呢?

首先,这解决了崩溃丢失的问题,InnoDB 是支持崩溃恢复不丢数据的。

利用事务来解决时序2 图中的问题,如下所示:

因为MySQL 事务机制和 MVCC,在 T3时刻会话B进行的操作不受会话A 的影响,因为会话A在 T4才提交事务,T2做的修改对会话B不可见。

总结

在不同的存储引擎中,count(*)函数的实现方式不同。我们之前讨论过使用缓存系统来存储计数值存在的问题。现在,我来简洁地解释一下为什么将计数值存储在Redis中不能保证与MySQL表中的数据精确一致。

Redis和MySQL是不同的存储系统,它们不支持分布式事务,因此无法提供精确一致的视图。这就是为什么将计数值存储在Redis中无法确保与MySQL表中数据的一致性。相比之下,将计数值存储在MySQL中可以解决一致性视图的问题。


转载来源:https://juejin.cn/post/7257922419319603256

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
4月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
236 6
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
636 66
|
5月前
|
缓存 关系型数据库 MySQL
在MySQL中处理高并发和负载峰值的关键技术与策略
采用上述策略和技术时,每个环节都要进行细致的规划和测试,确保数据库系统既能满足高并发的要求,又要保持足够的灵活性来应对各种突发的流量峰值。实施时,合理评估和测试改动对系统性能的影响,避免单一措施可能引起的连锁反应。持续的系统监控和分析将对维护系统稳定性和进行未来规划提供重要信息。
318 15
|
4月前
|
缓存 关系型数据库 MySQL
MySQL数据库性能调优:实用技术与策略
通过秉持以上的策略实施具体的优化措施,可以确保MySQL数据库的高效稳定运行。务必结合具体情况,动态调整优化策略,才能充分发挥数据库的性能潜力。
223 0
|
缓存 关系型数据库 MySQL
MySQL执行计划选择策略:揭秘查询优化的艺术
【10月更文挑战第15天】 在数据库性能优化中,选择最优的执行计划是提升查询效率的关键。MySQL作为一个强大的关系型数据库管理系统,提供了复杂的查询优化器来生成执行计划。本文将深入探讨如何选择合适的执行计划,以及为什么某些计划更优。
385 2
|
8月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
11月前
|
监控 关系型数据库 MySQL
Aurora MySQL负载突增应对策略与优化方案
通过以上策略,企业可以有效应对 Aurora MySQL 的负载突增,确保数据库在高负载情况下依然保持高性能和稳定性。这些优化方案涵盖了从架构设计到具体配置和监控的各个方面,能够全面提升数据库的响应速度和处理能力。在实际应用中,应根据具体的业务需求和负载特征,灵活调整和应用这些优化策略。
225 22
|
11月前
|
关系型数据库 MySQL 中间件
MySQL 中如何实现分库分表?常见的分库分表策略有哪些?
在MySQL中,分库分表(Sharding)通过将数据分散到多个数据库或表中,以应对大量数据带来的性能和扩展性问题。常见策略包括:哈希分片(分布均匀,查询效率高)、范围分片(适合范围查询)、列表分片(适用于特定值查询)、复合分片(灵活性高)和动态分片(灵活应对负载变化)。每种策略各有优劣,需根据业务需求选择。常用工具如MyCAT、ShardingSphere和TDDL可简化实现过程。
|
存储 缓存 关系型数据库
MySQL的count()方法慢
MySQL的 `COUNT()`方法在处理大数据量时可能会变慢,主要原因包括数据量大、缺乏合适的索引、InnoDB引擎的设计以及复杂的查询条件。通过创建合适的索引、使用覆盖索引、缓存机制、分区表和预计算等优化方案,可以显著提高 `COUNT()`方法的执行效率,确保数据库查询性能的提升。
1638 12
|
SQL 关系型数据库 MySQL
PHP与MySQL的高效协同开发策略####
本文深入探讨了PHP与MySQL在Web开发中的协同工作机制,通过优化配置、最佳实践和高级技巧,展示了如何提升数据库交互性能,确保数据安全,并促进代码可维护性。我们将从环境搭建讲起,逐步深入到查询优化、事务管理、安全防护及性能调优等核心环节,为开发者提供一套实战驱动的解决方案框架。 ####

相关产品

  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多