基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真

简介: 本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

plot(gb1,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');



X     = g1;



%设置网络参数 
%卷积核
Nfilter = floor(X(1));%8;  
%卷积核大小
Sfilter = floor(X(2));%5;     
%丢失因子
drops   = X(3);%0.025;  
%残差块
Nblocks = floor(X(4));%4;       
%特征个数
Nfeats  = Dims;      






%设置网络参数 
lgraph=func_layers2(Dims,Dimso,X);



%参数设置
options = trainingOptions("adam",...          
          'InitialLearnRate',X(5),...        
          'MaxEpochs',500,...               
          'miniBatchSize',2,...               
          'Plots','training-progress',...     
          'Verbose', false);                     


%训练
[net,INFO] = trainNetwork(Ptrain_reshape, Ttrain_reshape, lgraph, options);

Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;


figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on

subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on



%仿真预测
tmps   = predict(net, Ptest_reshape ); 
T_pred = double(tmps{1, 1});
%反归一化
T_pred = mapminmax('reverse', T_pred, vmax2);
ERR    = mean(abs(T_test-T_pred));
ERR

figure
plot(T_test, 'b','LineWidth', 1)
hold on
plot(T_pred, 'r','LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

figure
plotregression(T_test,T_pred,['回归']);

save R2.mat Rerr Rlos T_test T_pred ERR gb1

4.算法理论概述
时间序列预测在众多领域如金融、气象、工业生产等有着广泛的应用。准确预测时间序列的未来趋势对于决策制定、资源分配、风险评估等方面具有重要意义。传统的时间序列预测方法如 ARIMA 等在处理复杂的非线性时间序列时存在一定的局限性。随着深度学习技术的发展,时间卷积神经网络(TCN)因其能够自动学习时间序列中的复杂模式和特征,在时间序列预测中表现出良好的性能。然而,TCN 的性能高度依赖于其超参数的设置,如卷积核大小、层数、扩张率等。PSO(粒子群优化)则可以用于优化 TCN 的参数,以提高预测性能。,能够在复杂的搜索空间中找到接近最优的解,将其应用于 TCN 的超参数优化,可以进一步提高 TCN 的预测性能,从而实现更准确、可靠的时间序列预测。

  TCN 主要由一系列的因果卷积层(Causal Convolution Layer)和残差连接(Residual Connection)组成。

image.png

   对于种群中的每一个染色体(即一组超参数设置),构建相应的 TCN-LSTM 模型,并使用训练集数据对其进行训练。训练过程中采用合适的损失函数(如前面提到的基于预测误差的函数)和优化算法(如 Adam 等)来调整 TCN-LSTM 的权重参数。训练完成后,使用测试集数据对 TCN-LSTM 模型进行评估,计算其适应度值(如基于预测误差的适应度函数)。       

   经过多次迭代后,选择适应度值最高的染色体所对应的 TCN-LSTM 超参数设置,使用这些超参数构建最终的 TCN-LSTM 模型,并使用全部的训练数据对其进行重新训练,得到优化后的 TCN-LSTM 时间序列预测模型。
相关文章
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
316 0
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
191 8
|
2月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
197 8
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
175 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
168 0
|
4月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
269 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。

热门文章

最新文章