基于GA遗传优化的风光储微电网削峰填谷能量管理系统matlab仿真

简介: 本课题基于MATLAB2022a开发,利用遗传算法(GA)优化风光储微电网的削峰填谷能量管理。系统通过优化风力发电、光伏发电及储能系统的充放电策略,实现电力供需平衡,降低运行成本,提高稳定性与经济效益。仿真结果无水印展示,核心程序涵盖染色体编码、适应度计算、选择、交叉、变异等遗传操作,最终输出优化后的功率分配方案。削峰填谷技术可减少电网压力,提升可再生能源利用率,延长储能设备寿命,为微电网经济高效运行提供支持。

1.课题概述
基于GA遗传优化的风光储微电网削峰填谷能量管理系统matlab仿真。通过遗传算法优化风光储微电网的充放电控制过程,然后达到削峰填谷的能量管理目标。

2.系统仿真结果
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

3.核心程序与模型
版本:MATLAB2022a

```while gen < MAXGEN;
gen
Pe0 = 0.99;
pe1 = 0.01;

  FitnV=ranking(Objv);    
  Selch=select('sus',Chrom,FitnV);    
  Selch=recombin('xovsp', Selch,Pe0);   
  Selch=mut( Selch,pe1);   
  phen1=bs2rv(Selch,FieldD);   

  for a=1:1:NIND  
      X      = phen1(a,:);
      %计算对应的目标值
      [epls] = func_obj(X);
      Ee     = epls;
      JJ(a,1)= Ee;
  end 

  Objvsel=(JJ);    
  [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen=gen+1; 
  %保存参数收敛过程和误差收敛过程以及函数值拟合结论
  Error(gen) = mean(JJ);

end

figure;
plot(Error,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('适应度函数的优化过程');

figure;
plot(1./Error,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('微网运行日收益函数-公式1的优化过程');

[fitness,Socopt,Pbessopt,pbnewopt,Pbess2] = func_objoutput(X);
save R.mat

```

4.系统原理简介
风光储微电网是一种将风力发电、光伏发电以及储能系统集成在一起的小型电力系统,能够在并网或孤岛模式下运行。风力发电利用风力驱动风力发电机产生电能;光伏发电通过光伏效应将太阳能转换为电能;储能系统则用于存储多余的电能,起到平滑功率波动、提供备用电源等作用。

4.1 削峰填谷的基本概念与意义
概念:削峰填谷是指在电力需求较高的峰值时段,减少电网的供电压力,而在电力需求较低的谷值时段,储存多余的电能,以达到平衡电力供需、提高电力系统稳定性和运行效率的目的。

   意义:对于微电网来说,削峰填谷可以降低微电网对大电网的依赖,减少购电成本;同时,能够提高微电网内分布式电源的利用效率,延长储能设备的使用寿命,对微电网的经济、稳定运行具有重要意义。

4.2 GA优化
优化目标的确定:根据微电网的实际需求和运行特点,确定削峰填谷的优化目标。除了前面提到的最小化运行成本外,还可以考虑其他目标,如最小化功率波动、最大化可再生能源的利用率等。这些目标可以单独作为优化目标,也可以通过设置权重系数将多个目标组合成一个综合目标函数。

  在实际开发过程中,将问题的解空间转换为遗传算法可以处理的染色体编码空间。在风光储微电网削峰填谷能量管理系统中,染色体可以表示为各时段风力发电、光伏发电、储能系统的功率输出以及充放电状态等决策变量的组合。

3378069f7f80e0f87559a839eded445d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
145 0
|
2月前
|
传感器 机器学习/深度学习 算法
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
230 0
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
102 0
|
2月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
130 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
169 0
|
3月前
|
算法 安全 定位技术
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
309 40
|
7月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
7月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。

热门文章

最新文章