Python实现MaxCompute UDF/UDAF/UDTF

简介: 参数与返回值类型 参数与返回值通过如下方式指定: @odps.udf.annotate(signature) Python UDF目前支持ODPS SQL数据类型有:bigint, string, double, boolean和datetime。

参数与返回值通过如下方式指定:

@odps.udf.annotate(signature)

Python UDF目前支持ODPS SQL数据类型有:bigint, string, double, boolean和datetime。SQL语句在执行之前,所有函数的参数类型和返回值类型必须确定。因此对于Python这一动态类型语言,需要通过对UDF类加decorator的方式指定函数签名。

函数签名signature通过字符串指定,语法如下:

arg_type_list '->' type_list

 

arg_type_list: type_list | '*' | ''

 

type_list: [type_list ','] type

 

type: 'bigint' | 'string' | 'double' | 'boolean' | 'datetime'

·         箭头左边表示参数类型,右边表示返回值类型。

·         只有UDTF的返回值可以是多列, UDF和UDAF只能返回一列。

·         ‘*’代表变长参数,使用变长参数,UDF/UDTF/UDAF可以匹配任意输入参数。

下面是合法的signature的例子:

'bigint,double->string'            # 参数为bigintdouble,返回值为string

 

'bigint,boolean->string,datetime'  # UDTF参数为bigintboolean,返回值为string,datetime

 

'*->string'                        # 变长参数,输入参数任意,返回值为string

 

'->double'                         # 参数为空,返回值为double

Query语义解析阶段会将检查到不符合函数签名的用法,抛出错误禁止执行。执行期,UDF函数的参数会以函数签名指定的类型传给用户。用户的返回值类型也要与函数签名指定的类型一致,否则检查到类型不匹配时也会报错。ODPS SQL数据类型对应Python类型如下:

ODPS SQL Type

Bigint

String

Double

Boolean

Datetime

Python Type

int

str

float

bool

int

注解:

·         Datetime类型是以int的形式传给用户代码的,值为epoch utc time起始至今的毫秒数。用户可以通过Python标准库中的datetime模块处理日期时间类型。

·         NULL值对应Python里的None。

此外,odps.udf.int(value[, silent=True])的参数也做了调整。增加了参数 silent 。当 silent 为 True 时,如果 value 无法转为 int ,不会抛出异常,而是返回 None 。

UDF

实现Python UDF非常简单,只需要定义一个new-style class,并实现 evaluate 方法。下面是一个例子:

from odps.udf import annotate

 

@annotate("bigint,bigint->bigint")

class MyPlus(object):

 

   def evaluate(self, arg0, arg1):

       if None in (arg0, arg1):

           return None

       return arg0 + arg1

注解:Python UDF必须通过annotate指定函数签名。

·         class odps.udf.BaseUDAF:继承此类实现Python UDAF。

·         BaseUDAF.new_buffer():实现此方法返回聚合函数的中间值的buffer。buffer必须是mutable object(比如list, dict),并且buffer的大小不应该随数据量递增,在极限情况下,buffer marshal过后的大小不应该超过2Mb。

·         BaseUDAF.iterate(buffer[, args, ...]):实现此方法将args聚合到中间值buffer中。

·         BaseUDAF.merge(buffer, pbuffer):实现此方法将两个中间值buffer聚合到一起,即将pbuffer merge到buffer中。

·         BaseUDAF.terminate(buffer):实现此方法将中间值buffer转换为ODPS SQL基本类型。

下面是一个UDAF求平均值的例子。

#coding:utf-8

from odps.udf import annotate

from odps.udf import BaseUDAF

 

@annotate('double->double')

class Average(BaseUDAF):

 

    def new_buffer(self):

        return [0, 0]

 

    def iterate(self, buffer, number):

        if number is not None:

            buffer[0] += number

            buffer[1] += 1

 

    def merge(self, buffer, pbuffer):

        buffer[0] += pbuffer[0]

        buffer[1] += pbuffer[1]

 

    def terminate(self, buffer):

        if buffer[1] == 0:

            return 0.0

        return buffer[0] / buffer[1]

·         class odps.udf.BaseUDTF:Python UDTF的基类,用户继承此类,并实现 process , close 等方法。

·         BaseUDTF.init():初始化方法,继承类如果实现这个方法,则必须在一开始调用基类的初始化方法 super(BaseUDTF, self).init() 。init 方法在整个UDTF生命周期中只会被调用一次,即在处理第一条记录之前。当UDTF需要保存内部状态时,可以在这个方法中初始化所有状态。

·         BaseUDTF.process([args, ...]):这个方法由ODPS SQL框架调用,SQL中每一条记录都会对应调用一次 process , process 的参数为SQL语句中指定的UDTF输入参数。

·         BaseUDTF.forward([args, ...]):UDTF的输出方法,此方法由用户代码调用。每调用一次 forward ,就会输出一条记录。 forward 的参数为SQL语句中指定的UDTF的输出参数。

·         BaseUDTF.close():UDTF的结束方法,此方法由ODPS SQL框架调用,并且只会被调用一次,即在处理完最后一条记录之后。

下面是一个UDTF的例子。

#coding:utf-8

# explode.py

 

from odps.udf import annotate

from odps.udf import BaseUDTF

 

 

@annotate('string -> string')

class Explode(BaseUDTF):

   """string按逗号分隔输出成多条记录

   """

 

   def process(self, arg):

       props = arg.split(',')

       for p in props:

           self.forward(p)

注解:Python UDTF也可以不加annotate指定参数类型和返回值类型。这样,函数在SQL中使用时可以匹配任意输入参数,但返回值类型无法推导,所有输出参数都将认为是string类型。因此在调用 forward 时,就必须将所有输出值转成 str 类型。

Python UDF可以通过 odps.distcache 模块引用资源文件,目前支持引用文件资源和表资源。

·         odps.distcache.get_cache_file(resource_name)

o    返回指定名字的资源内容。 resource_name 为 str 类型,对应当前Project中已存在的资源名。如果资源名非法或者没有相应的资源,会抛出异常。

o    返回值为 file-like object ,在使用完这个object后,调用者有义务调用 close 方法释放打开的资源文件。

下面是使用 get_cache_file 的例子:

from odps.udf import annotate

from odps.distcache import get_cache_file

 

@annotate('bigint->string')

class DistCacheExample(object):

 

def __init__(self):

    cache_file = get_cache_file('test_distcache.txt')

    kv = {}

    for line in cache_file:

        line = line.strip()

        if not line:

            continue

        k, v = line.split()

        kv[int(k)] = v

    cache_file.close()

    self.kv = kv

 

def evaluate(self, arg):

    return self.kv.get(arg)

·         

odps.distcache.get_cache_table(resource_name)

o    返回指定资源表的内容。 resource_name 为 str 类型,对应当前Project中已存在的资源表名。如果资源名非法或者没有相应的资源,会抛出异常。

o    返回值为 generator 类型,调用者通过遍历获取表的内容,每次遍历得到的是以 tuple 形式存在的表中的一条记录。

下面是使用 get_cache_table 的例子:

from odps.udf import annotate

from odps.distcache import get_cache_table

 

@annotate('->string')

class DistCacheTableExample(object):

    def __init__(self):

        self.records = list(get_cache_table('udf_test'))

        self.counter = 0

        self.ln = len(self.records)

 

    def evaluate(self):

        if self.counter > self.ln - 1:

            return None

        ret = self.records[self.counter]

        self.counter += 1

        return str(ret)

 


FAQ:

Q:pyudf 如何像 java udf一样 初始化 加载数据?

A:写在 init 里。


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
3月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 推荐镜像

    更多