AI驱动智能化日志分析 : 通过决策树给日志做聚类分析

简介: 日志自动化、智能化分析对于AI需求 通常,我们分析日志,是为了两个目标: 对数据有个整体的概览,例如,生成一天内的报表。 对异常数据进行挖掘,例如,对特殊的日志进行告警。 日志分析,通常对分析者有这些要求: 对业务数据的熟悉程度要求比较高。

日志自动化、智能化分析对于AI需求

通常,我们分析日志,是为了两个目标:

  • 对数据有个整体的概览,例如,生成一天内的报表。
  • 对异常数据进行挖掘,例如,对特殊的日志进行告警。

日志分析,通常对分析者有这些要求:

  1. 对业务数据的熟悉程度要求比较高。
  2. 要求开发者具备搭建分析系统的能力。
  3. 对分析算法足够的熟悉。

通常分析日志,可以借助于流计算系统来做实时计算、或者借助elasticsearch做搜索。日志服务,提供了一整套完整的日志收集、消费、搜索、计算的平台。云计算提供的平台解放了开发者,开发者不再需要把精力消耗在日志支撑系统的维护上,把自己的时间投入到自己的主营业务上,会获得最大的回报。

不仅如此,日志服务还提供了了一些智能化分析日志的手段。在日志服务控制台,左侧快速查询栏目,提供了对数字列的分类统计,可以看出数字列的分布,集中分布在哪些地方,有哪些特殊值。

image.png

只从Alpha GO战胜李世石之后,人们终于认识到,机器学习用来预测的准确率,已经达到了人类智能的水平。AI,也可以帮我们来完成一些传统日志分析系统无法完成的工作,例如数据分类、离群数据分析等。今天我们介绍日志服务的快速分析所使用的无监督机器学习:决策树算法,并且通过样例来演示如何使用决策树来挖掘异常数据。

决策树算法简介

机器学习的算法繁多,其中很多算法是一类算法,而有些算法又是从其他算法中衍生出来的,因此我们可以按照不同的角度将其分类。按照学习方式分类,包括监督式学习,无监督学习,半监督学习,强化学习。其中,决策树属于无监督学习。无监督学习,不需要人工标注数据集,依赖于算法本身来预测数据。

数值列的分类也可以使用决策树算法。下图描述如果迭代的把数据归类到对应的桶中。

image.png

对于每一轮迭代:

  1. 初始化是是N个桶。
  2. 新加入一个数据,变成N+1个桶,并把N+1个桶排序。
  3. 计算相邻两个桶之间的距离,并且选择距离最小的两个桶合并成一个桶,重新计算新桶的平均值。
  4. 重复步骤1。

上述是基本的算法过程。详细的算法描述见论文:
`Yael Ben-Haim and Elad Tom-Tov, "A streaming parallel decision tree algorithm",
J. Machine Learning Research 11 (2010), pp. 849--872.`

决策树算法分析日志案例

今天上述的数值分类算法已经在日志服务中提供了,参考文档numeric_histogram

查找异常值

首先看所有值的

* | select count(1) , latency group by  latency

image.png

从结果中看,latency=1的值明显偏离其他数值。我们使用numeric_histogram把latency列分成两类:

* | select numeric_histogram(2,latency)

获取结果中包含两个桶,显示每个桶的平均值。 一个桶的均值是1,个数为100个;另一个桶均值是11.23,个数为1300。可以看出,均值为1的桶明显偏离了整体的均值。

image.png

同样的,划分3个桶

* | select numeric_histogram(3,latency)

三个桶的均值分别是1,11,12.5:

image.png

整体概括日志

我们都知道,数值列的分布范围比较大,无法使用group by进行计算,但我们可以使用numeric_histogram函数,来对数值列进行group by。

从计算结果中可以看到,latency大部分分布于308.242k左右。

image.png

更多经常内容

SQL分析语法
5分钟搭建网站实时分析:Grafana+日志服务实战
从日志到双十一大屏只要一步:LOG/SLS+DataV 打通
自建ELK vs 日志服务(SLS)全方位对比

试用日志服务

查询链接
dashboard链接

以下5个子帐号供试用,请随机选择一个登录,若登录不成功请换一个子帐号尝试:

登录地址 用户名 密码
链接 sls_reader1@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader2@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader3@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader4@1654218965343050 pnX-32m-MHH-xbm
链接 sls_reader5@1654218965343050 pnX-32m-MHH-xbm

相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
目录
相关文章
|
2月前
|
人工智能 监控 安全
提效40%?揭秘AI驱动的支付方式“一键接入”系统
本项目构建AI驱动的研发提效系统,通过Qwen Coder与MCP工具链协同,实现跨境支付渠道接入的自动化闭环。采用多智能体协作模式,结合结构化Prompt、任务拆解、流程管控与安全约束,显著提升研发效率与交付质量,探索大模型在复杂业务场景下的高采纳率编码实践。
467 26
提效40%?揭秘AI驱动的支付方式“一键接入”系统
|
2月前
|
人工智能 自然语言处理 测试技术
从人工到AI驱动:天猫测试全流程自动化变革实践
天猫技术质量团队探索AI在测试全流程的落地应用,覆盖需求解析、用例生成、数据构造、执行验证等核心环节。通过AI+自然语言驱动,实现测试自动化、可溯化与可管理化,在用例生成、数据构造和执行校验中显著提效,推动测试体系从人工迈向AI全流程自动化,提升效率40%以上,用例覆盖超70%,并构建行业级知识资产沉淀平台。
从人工到AI驱动:天猫测试全流程自动化变革实践
|
2月前
|
人工智能 自然语言处理 Shell
我们开源了一款 AI 驱动的用户社区
KoalaQA 是一款开源的 AI 驱动用户社区,支持智能问答、语义搜索、自动运营与辅助创作,助力企业降低客服成本,提升响应效率与用户体验。一键部署,灵活接入大模型,快速构建专属售后服务社区。
322 5
我们开源了一款 AI 驱动的用户社区
|
2月前
|
人工智能 IDE 开发工具
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
|
2月前
|
存储 人工智能 前端开发
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
551 6
|
2月前
|
机器学习/深度学习 人工智能 监控
拔俗AI智能营运分析助手软件系统:企业决策的"数据军师",让经营从"拍脑袋"变"精准导航"
AI智能营运分析助手打破数据孤岛,实时整合ERP、CRM等系统数据,自动生成报表、智能预警与可视化决策建议,助力企业从“经验驱动”迈向“数据驱动”,提升决策效率,降低运营成本,精准把握市场先机。(238字)
|
新零售 人工智能
FashionAI全球挑战赛双赛道冠军诞生 百万大奖推动服饰智能化科研发展
由阿里巴巴集团旗下的“图象和美”研究团队、香港理工大学(理大)纺织及制衣学系、英国纺织协会联合举办的FashionAI全球挑战赛在香港理工大学进行了总决赛。
3479 0
|
2月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
656 42

相关产品

  • 日志服务