[arm驱动]Linux内核开发之阻塞非阻塞IO----轮询操作

简介:

《[arm驱动]Linux内核开发之阻塞非阻塞IO----轮询操作》涉及内核驱动函数二个,内核结构体零个,分析了内核驱动函数二个;可参考的相关应用程序模板或内核驱动模板二个,可参考的相关应用程序模板或内核驱动一个

一、概念:Poll是非阻塞IO----轮询操作
   非阻塞 I/O 的应用程序常常使用 poll, select, 和 epoll 系统调用. poll, select 和 epoll 本质上有相同的功能: 每个允许一个进程来决定它是否可读或者写一个或多个文件而不阻塞. 

   Tip:select()和poll(),epoll查询是否可对设备进行无阻塞的访问,这几个系统调用最终又会引发设备驱动中的poll()函数被执行

   PS:看到这感觉晕了,暂且不理会
二、使用场景:
   它们常常用在必须使用多输入输出流的应用程序(如调用read,write字符设备驱动文件/dev/****)。因为这些调用也可阻塞进程直到任何一个给定集合的文件描述符可用来读或写.
三、相关函数
1、内核函数
内核驱动函数一)a)poll()函数原型:


unsigned int (*poll) (struct file *filp, poll_table *wait);

  作用:调用poll_wait(),将可能引起设备文件状态变化的等待队列头添加到poll_table.
返回值:返回是否能对设备进行无阻塞读写访问的掩码

       放回值mask常量及函数

           常量    说明
           POLLIN    普通或优先级带数据可读
           POLLRDNORM    普通数据可读
           POLLRDBAND    优先级带数据可读
           POLLPRI    高优先级数据可读
           POLLOUT    普通数据可写
           POLLWRNORM    普通数据可写
           POLLWRBAND    优先级带数据可写
           POLLERR    发生错误
           POLLHUP    发生挂起
           POLLNVAL    描述字不是一个打开的文件    

内核驱动函数二)b)poll_wait()函数原型:    

void poll_wait(struct file *filp, wait_queue_head_t *queue, poll_table *wait);

   作用:将可能引起设备文件状态变化的等待队列头添加到poll_table
2、应用程序poll函数    

int poll(struct pollfd *fds, nfds_t nfds, int timeout)

  a) 参数:
fds 指向 struct pollfd 数组
   nfds 指定 pollfd 数组元素的个数,也就是要监测几个 pollfd
   timeout 时间参数,单位ms,1000ms=1s
   Tip:fds可以是很多个文件(如网卡,按键),poll可以论寻fds[n]

   b)结构体pollfd
   struct pollfd {
       int fd;
       short events;
       short revents;
   };

3、总结:从应用程序的调用来看,并不需要理会内核函数中的参数poll_table *wait是什么,只需要调用poll_wait()

四、使用模板
模板一)a)内核程序模板

static DECLARE_WAIT_QUEUE_HEAD(waitq);//定义结构体名称为waitq
poll(struct file *file, poll_table *wait){//返回mask
     unsigned int mask = 0;
    poll_wait(file, &waitq, wait);
     if(...)//可读
    {
          mask |= POLLIN | POLLRDNORM;    //标识数据可获得
     }
    if(...)//可写
    {
          mask |= POLLOUT | POLLRDNORM;    //标识数据可写入
     }
    return mask;
}

模板二)b)测试程序模板

struct pollfd fds[n];
fds[0].fd     = fd;
fds[0].events = POLLIN;
poll(fds, n, 5000);

   c)再次理解下面几句
   fds 指向 struct pollfd 数组
   nfds 指定 pollfd 数组元素的个数,也就是要监测几个 pollfd
   timeout 时间参数,单位ms,1000ms=1s
   Tip:fds可以是很多个文件(如网卡,按键),poll可以论寻fds[n]


实例一)五、案例jz2440中断非阻塞驱动实例

      1、 非阻塞内核按键驱动。

//“irq_drv”,"irq_","irq"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/delay.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);//定义结构体名称为button_waitq
static struct class *irq_class;
static struct class_device    *irq_class_dev;
static int ev_press = 0;
static unsigned char key_val;
struct pin_desc{
    unsigned int pin;
    unsigned int key_val;
};
struct pin_desc pins_desc[3] = {
    {S3C2410_GPF0, 0x01},
    {S3C2410_GPF2, 0x02},
    {S3C2410_GPG3, 0x03},
};
static irqreturn_t irq_handle(int irq, void *dev__id){
    //printk("irq = %d\n", irq);
    int pinval;
    struct pin_desc *pindesc = (struct pin_desc *)dev__id;
    pinval = s3c2410_gpio_getpin(pindesc->pin);
    if(!pinval){//按下
    key_val = pindesc->key_val;
    }else{//松开
    key_val = 0x80 | pindesc->key_val;
    }
    ev_press = 1;
    wake_up_interruptible(&button_waitq);
    return IRQ_RETVAL(IRQ_HANDLED);//warn:返回IRQ_HANDLED
}
static unsigned irq_drv_poll(struct file *file, poll_table *wait)
{
    unsigned int mask = 0;
    poll_wait(file, &button_waitq, wait); // 不会立即休眠
    if (ev_press)
        mask |= POLLIN | POLLRDNORM;
    return mask;
}
static int irq_drv_open(struct inode *inode, struct file *file)
{
    printk("irq_dev read\n");
//    request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char * devname, void * dev_id); dev_id随意
    request_irq(IRQ_EINT0, irq_handle, IRQ_TYPE_EDGE_BOTH, "s2", &pins_desc[0]);
    request_irq(IRQ_EINT2, irq_handle, IRQ_TYPE_EDGE_BOTH, "s3", &pins_desc[1]);
    request_irq(IRQ_EINT11, irq_handle, IRQ_TYPE_EDGE_BOTH, "s4", &pins_desc[2]);
    return 0;
}
static ssize_t irq_drv_read (struct file *file, char __user *buf, size_t count, loff_t *ppos){
    if(count != 1)return -EINVAL;
    wait_event_interruptible(button_waitq, ev_press);//ev_press标志(if!(ev_press)),那么一直休眠
    copy_to_user(buf, &key_val, 1);//一个 char 0xff
    ev_press = 0;
    return 1;//warn :return the size of val
}
static ssize_t irq_drv_write(struct file *file, const char __user *buf, size_t count, loff_t * ppos)
{
    printk("irq_dev write\n");
    return 0;
}
static ssize_t irq_drv_release(struct inode *inode, struct file *file){
    free_irq(IRQ_EINT0, &pins_desc[0]);
    free_irq(IRQ_EINT2, &pins_desc[1]);
    free_irq(IRQ_EINT11, &pins_desc[2]);
    return 0;
}
static struct file_operations irq_drv_fops = {
    .owner  =   THIS_MODULE,    /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
    .open   =   irq_drv_open,
    .write =    irq_drv_write, 
    .read = irq_drv_read,
    .release = irq_drv_release,
    .poll = irq_drv_poll,
};
int major;
static int irq_drv_init(void)
{
    major = register_chrdev(0, "irq_drv", &irq_drv_fops); // 注册, 告诉内核
    if (major < 0) {
      printk(" can't register major number\n");
      return major;
    }
    irq_class = class_create(THIS_MODULE, "irq_drv");
    if (IS_ERR(irq_class))
        return PTR_ERR(irq_class);
    irq_class_dev = class_device_create(irq_class, NULL, MKDEV(major, 0), NULL, "irq"); /* /dev/xyz */
    if (IS_ERR(irq_class_dev))
        return PTR_ERR(irq_class_dev);
    return 0;
}
static void irq_drv_exit(void)
{
    unregister_chrdev(major, "irq_drv"); // 卸载
    class_device_unregister(irq_class_dev);
    class_destroy(irq_class);
}
module_init(irq_drv_init);
module_exit(irq_drv_exit);
MODULE_LICENSE("GPL");


   2、测试应用程序

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <poll.h>
/* irq
  */
int main(int argc, char **argv)
{
    int fd;
    unsigned char key_val;
    int cnt = 0;
    int ret;
    struct pollfd fds[1];
    fd = open("/dev/irq", O_RDWR);
    if (fd < 0)
    {
        printf("can't open!\n");
        exit(1);
    }
    fds[0].fd = fd;
    fds[0].events = POLLIN;
    while (1)
    {
        ret = poll(fds, 1, 5000);
        if(ret == 0){
        printf("time out!\n");
        }else{
        read(fd, &key_val, 1);
        printf("key_Vals = 0x%x\n", key_val);
            }
    }
    return 0;
}
Makefile
#myirq.bin
objs := $(patsubst %c, %o, $(shell ls *.c))
myarmgcc := /workspacearm/armlinuxgcc2626/bin/arm-linux-gcc
myirq.bin:$(objs)
    $(myarmgcc) -o $@ $^
    cp *.bin /opt/fsmini/
%.o:%.c
    $(myarmgcc) -c -o $@ $<
clean:
    rm -f  *.bin *.o

本文转自lilin9105 51CTO博客,原文链接:http://blog.51cto.com/7071976/1392082,如需转载请自行联系原作者

相关文章
|
5月前
|
监控 Linux 开发者
理解Linux操作系统内核中物理设备驱动(phy driver)的功能。
综合来看,物理设备驱动在Linux系统中的作用是至关重要的,它通过与硬件设备的紧密配合,为上层应用提供稳定可靠的通信基础设施。开发一款优秀的物理设备驱动需要开发者具备深厚的硬件知识、熟练的编程技能以及对Linux内核架构的深入理解,以确保驱动程序能在不同的硬件平台和网络条件下都能提供最优的性能。
313 0
|
10月前
|
存储 网络协议 Linux
【Linux】进程IO|系统调用|open|write|文件描述符fd|封装|理解一切皆文件
本文详细介绍了Linux中的进程IO与系统调用,包括 `open`、`write`、`read`和 `close`函数及其用法,解释了文件描述符(fd)的概念,并深入探讨了Linux中的“一切皆文件”思想。这种设计极大地简化了系统编程,使得处理不同类型的IO设备变得更加一致和简单。通过本文的学习,您应该能够更好地理解和应用Linux中的进程IO操作,提高系统编程的效率和能力。
469 34
|
Java Linux API
Linux设备驱动开发详解2
Linux设备驱动开发详解
256 6
|
消息中间件 算法 Unix
Linux设备驱动开发详解1
Linux设备驱动开发详解
286 5
|
Linux API
Linux里的高精度时间计时器(HPET)驱动 【ChatGPT】
Linux里的高精度时间计时器(HPET)驱动 【ChatGPT】
|
Ubuntu Linux
内核实验(九):添加IO驱动的阻塞读写功能
本文通过修改内核模块代码,介绍了如何在Linux内核中为IO驱动添加阻塞读写功能,使用等待队列和条件唤醒机制来实现读写操作的阻塞和非阻塞模式,并在Qemu虚拟机上进行了编译、部署和测试。
167 0
|
7月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
1226 61
|
7月前
|
消息中间件 数据可视化 Kafka
docker arm架构部署kafka要点
本内容介绍了基于 Docker 的容器化解决方案,包含以下部分: 1. **Docker 容器管理**:通过 Portainer 可视化管理工具实现对主节点和代理节点的统一管理。 2. **Kafka 可视化工具**:部署 Kafka-UI 以图形化方式监控和管理 Kafka 集群,支持动态配置功能, 3. **Kafka 安装与配置**:基于 Bitnami Kafka 镜像,提供完整的 Kafka 集群配置示例,涵盖 KRaft 模式、性能调优参数及数据持久化设置,适用于高可用生产环境。 以上方案适合 ARM64 架构,为用户提供了一站式的容器化管理和消息队列解决方案。
687 10
|
8月前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。