面向零售业的AI驱动的视频分析

简介: 人工智能(AI)与数据科学直接相关,后者旨在从一系列信息中提取业务价值。 该价值可以包括扩展预测能力,规律知识,明智的决策,降低成本等。换句话说,人工智能以大量信息运行,分析输入数据,并根据这些信息开发自适应解决方案。

AI-Driven-Video-Analytics-for-Grocery-Stores-1068x656-1.jpg

人工智能(AI)与数据科学直接相关,后者旨在从一系列信息中提取业务价值。 该价值可以包括扩展预测能力,规律知识,明智的决策,降低成本等。换句话说,人工智能以大量信息运行,分析输入数据,并根据这些信息开发自适应解决方案。


在现代世界,零售业正在迅速增加人工智能在所有可能的工作流程中的应用。因此,通过应用分析来利用机会无疑可以改进食品杂货行业的各种操作。有了人工智能,最大的连锁超市实现了雄心勃勃的目标:


1)改善和扩展客户服务能力


2)自动化供应链计划和订单交付


3)减少产品浪费


4)加强对缺货和库存过多的管理


5)加强需求预测


人工智能解决方案的生态系统是广泛的,能够满足所有杂货店零售商的大多数需求(从大型连锁店到最小的企业)。到目前为止,在隔离期间,在线商品分析已经成为管理缺货情况的真正“救世主”。通过智能数据驱动的方法,超市可以处理大量的信息,准确预测消费者的需求和供应库存,并生成最准确的价格和购买建议。因此,即使在冠状病毒大流行等最危急的情况下,杂货零售商也将继续盈利。话虽如此,很明显,所有公司现在都需要针对COVID-19立即采取行动计划。


视频监控的新水平


通常,大多数杂货店都具有连续的视频监视系统。以前,此类系统的安装仅出于安全目的:控制产品的安全性并防止盗窃。但是现在,人工智能视频分析能够监视客户从进入商店到付款的整个过程。它是如何工作的,为什么商店需要它?


像亚马逊和沃尔玛这样的大型连锁超市使用高科技相机,利用自动物体识别(automatic object identification)技术。这种系统通常用于无人驾驶的电动汽车上,通过计算机监控乘客行为并处理视觉信息。但商场视频分析的主要目标是确定哪些商品有很高的需求,哪些产品的购买者最常回到货架上,等等。此外,相机还可以识别人脸,确定顾客的身高、体重、年龄和其他身体特征。随后,人工智能(基于所有获得的数据)从特定的消费者群体中识别出最受欢迎的产品,并提供更改定价策略的选项。计算机自动完成所有这些过程,不需要人工干预。


防止商品缺货


零售业中的人工智能能够解决人们无法应对的问题。一个人实际上无法观看所有视频监控,没有足够的时间进行此操作,而且人类的视觉并不完美。但这不再是必需的!商场的视频分析可完美应对此类任务。例如,将摄像头连接到商店的自动化仓库系统,并在货架上配备传感器,可以发现库存记录中的漏洞,促进调查。商场数据分析还可以监视库存并提供有关补货需求的信号。如上所述的面部识别技术能够将人的面部与罪犯(或通缉犯)的面部进行比较,并警告安全人员。


促进人流和商店布局


收集的有关客户行为的数据可帮助超市经理优化商店布局。此外,计算机程序可以设计最佳的布局并对其进行测试,从而产生总体上更好的客户体验,并增加商店的利润。


可以收集有关进入商店的人数以及他们花费的购物时间的数据。基于这些数据,人工智能可以预测人流量的大小和人们排队等候的时间。这将有助于改善客户服务并减少员工成本。 换句话说,AI能够在一天的各个小时制定最佳的商店管理计划,从而为企业带来最大的收益。 例如:


1)优化展示位置和平面布置


2)改善策略性人员分配


3)在停留时间内和购买之间得出相关性


4)预测各个购物群体的产品


增强客户体验


每个企业都应尽可能了解其受众,以提供最佳服务。商场中的AI使用视频智能软件提供详细的人口统计数据,并详细分析购物习惯。这些信息为商场提供了无限的机会来增加利润。通过了解他们的顾客,商场经理可以最大化顾客的购物体验,创造有利条件(专门针对顾客的喜好)。此外,用于杂货店的AI可以帮助产生给定目标市场的最准确的需求预测模型。


除了与目标受众合作之外,管理人员还可以使用从视频分析获得的数据将信息传输到营销部门。通过探索其他受众,营销人员可以制定策略,通过创建相关的广告、促销和销售来吸引新客户。此外,商场可以为小型购物群体创建单独的展示柜(纯素食产品或无麸质产品),以满足他们的需求。


在商场所有现有的人工智能技术中,视频内容分析可在几乎所有活动中提供最大的支持:销售,营销,广告和布局策略。通过优化这些流程,商场不仅可以节省和减少损失,还可以通过增加利润来扩展业务。主要目标不仅是要满足客户需求,而且要提高客户保留率。


原文链接
相关文章
|
2月前
|
人工智能 监控 安全
提效40%?揭秘AI驱动的支付方式“一键接入”系统
本项目构建AI驱动的研发提效系统,通过Qwen Coder与MCP工具链协同,实现跨境支付渠道接入的自动化闭环。采用多智能体协作模式,结合结构化Prompt、任务拆解、流程管控与安全约束,显著提升研发效率与交付质量,探索大模型在复杂业务场景下的高采纳率编码实践。
469 26
提效40%?揭秘AI驱动的支付方式“一键接入”系统
|
2月前
|
人工智能 自然语言处理 测试技术
从人工到AI驱动:天猫测试全流程自动化变革实践
天猫技术质量团队探索AI在测试全流程的落地应用,覆盖需求解析、用例生成、数据构造、执行验证等核心环节。通过AI+自然语言驱动,实现测试自动化、可溯化与可管理化,在用例生成、数据构造和执行校验中显著提效,推动测试体系从人工迈向AI全流程自动化,提升效率40%以上,用例覆盖超70%,并构建行业级知识资产沉淀平台。
从人工到AI驱动:天猫测试全流程自动化变革实践
|
2月前
|
人工智能 自然语言处理 Shell
我们开源了一款 AI 驱动的用户社区
KoalaQA 是一款开源的 AI 驱动用户社区,支持智能问答、语义搜索、自动运营与辅助创作,助力企业降低客服成本,提升响应效率与用户体验。一键部署,灵活接入大模型,快速构建专属售后服务社区。
324 5
我们开源了一款 AI 驱动的用户社区
|
2月前
|
人工智能 IDE 开发工具
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
|
2月前
|
机器学习/深度学习 人工智能 监控
拔俗AI智能营运分析助手软件系统:企业决策的"数据军师",让经营从"拍脑袋"变"精准导航"
AI智能营运分析助手打破数据孤岛,实时整合ERP、CRM等系统数据,自动生成报表、智能预警与可视化决策建议,助力企业从“经验驱动”迈向“数据驱动”,提升决策效率,降低运营成本,精准把握市场先机。(238字)
|
2月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
662 42
|
3月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
1006 48
|
2月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
486 30