Android网络性能监控方案

简介: 移动互联网时代,移动端极大部分业务都需要通过App和Server之间的数据交互来实现,所以大部分App提供的业务功能都需要使用网络请求。如果因为网络请求慢或者请求失败,导致用户无法顺畅的使用业务功能,会对用户体验造成极大影响。此外,EMAS对外提供的APM之前并不包括网络监控功能,而网络性能监控作为移动端性能监控的重要组成部分,我们急需补全这部分能力来完善APM的产品功能,进一步满足客户的需求。

阿里云 云原生应用研发平台EMAS 刘宝文(木睿)

背景

移动互联网时代,移动端极大部分业务都需要通过App和Server之间的数据交互来实现,所以大部分App提供的业务功能都需要使用网络请求。如果因为网络请求慢或者请求失败,导致用户无法顺畅的使用业务功能,会对用户体验造成极大影响。

此外,EMAS对外提供的APM之前并不包括网络监控功能,而网络性能监控作为移动端性能监控的重要组成部分,我们急需补全这部分能力来完善APM的产品功能,进一步满足客户的需求。

“阿里巴巴应用研发平台 EMAS 是国内领先的云原生应用研发平台(移动App、H5应用、小程序、Web应用等),基于广泛的云原生技术(Backend as a Service、Serverless、DevOps、低代码等),致力于为企业、开发者提供一站式的应用研发管理服务,涵盖开发、测试、运维、运营等应用全生命周期。”

问题与挑战

网络性能监控在端上主要包括数据采集和数据上报。我们希望能尽可能采集有用的信息来帮助客户发现、定位和解决网络性能问题。我们面临如下问题和挑战:

•首先要解决的是网络请求过程中,哪些阶段会影响请求性能,如果发现网络性能有问题,需要采集哪些数据来帮助用户去定位和解决问题。

• android上主流的网络框架有okhttp2、okhttp3、okhttp4、volley、retrofit、httpclient和系统提供的httpurlconnection等,在我们不确定客户使用哪个网络库的哪个版本的情况下,如何尽量采集有用的信息。

• 网络请求各个阶段的数据采集都是离散的,如何保证单个请求各个离散的监控数据能够串联起来,不和其他请求的监控数据混在一起。

• 由于弱网环境下的网络请求日志往往更有价值,需要尽可能将异常的网络请求日志数据上报到服务端。

• 并发网络请求时,需要确保在日志上传时尽量不影响客户正常业务。

实现方案

网络性能监控在端上的具体实现主要包含两大模块:
• 数据采集
• 数据上报
其中数据采集是整个SDK框架的核心。

整体架构概览:

image.png

接入层:
网络监控属于高可用产品的一部分,采用高可用统一接入的方式接入。
插件层:
高可用目前框架是通过插件式的方式集成各个业务,实现networkmonitor plugin集成到APM中,补充APM中网络监控部分。
逻辑层:
主要负责采集控制、数据管理、缓存管理和数据上报。
拦截器层:
整个网络监控的核心。为了采集更多的信息,我们选择使用字节码注入技术来实现网络请求监控功能。对OkHttp、HttpClient和HttpUrlConnection,分别实现Interceptor去采集不同网络库中网络请求各个阶段的数据,并在请求结束时完成采集进行上报。此外,通过自定义gradle plugin的方式,为各个网络库实现Injector和开关,控制在应用构建阶段将Interceptor中各个采集的方法注入到对应网络库字节码的埋点位置,从而实现在运行时网络请求各个阶段采集需要的数据。

数据采集

采集哪些数据

首先需要确定采集的数据范围来帮助我们及时发现网络请求的性能和异常等情况,另一方面也需要有额外的数据来辅助排查问题。所以我们采集的数据主要包括四个部分:
• 基础数据。
• 性能数据。
• 异常信息。
• 事件序列数据。

基础数据

image.png

• 请求url:对请求做聚合运算。
• 目标IP地址:对于多出口IP的客户,支持IP地址维度的数据分析。
• dns解析结果:请求url的域名解析ip列表,用于分析是否存在域名劫持的问题。
• http code:根据http code确定请求状态。
• 上行流量:包括整个请求上行header和body的总的流量,包含重试和重定向的上行流量。用于监控上行流量开销。
• 下行流量:包括整个请求下行header和body的总的流量,包含重试和重定向的下行流量。用于监控下行流量开销。
• 网络库类型及版本:对于客户更换网络库或者升级网络库版本的情况,可以提供前后的网络数据的差异。

性能数据

性能数据主要是采集整个网络请求中各个阶段的耗时情况来定位慢请求发生的阶段。下图列举了http请求可能出现的各个阶段。

image.png

所以性能数据部分需要采集下述各个阶段的耗时数据:

  • •整个网络请求耗时
    • •dns耗时
    • •建连耗时
      • •TLS建连耗时
    • •数据上行耗时
      • •header上行耗时
      • •body上行耗时
    • •数据下行耗时
      • •header下行耗时
      • •body下行耗时

异常信息

异常信息主要是收集网络请求各阶段出现异常时的异常栈的信息。比如常见的java.net.UnknownHostException、java.net.SocketTimeoutException等。

事件序列数据

事件序列数据主要是收集网络请求各阶段的监控事件的信息,另外对于特定网络库的一些特殊的事件的监控,比如okhttp的连接复用、自动重定向和失败重试等对网络耗时有影响的机制。最后将这些事件按时间顺序排列。

比如在okhttp上dns被劫持的场景,我们通过基础数据中的目标IP地址去判断dns劫持情况,这个目标IP地址是在建立连接的时候去采集的。如果第一个请求发生了dns劫持的情况,那这个请求我们能正常识别的dns劫持已经发生。如果后续的网络请求复用了这个连接,因为不会再去建立连接,所以基础数据中没有目标IP地址,这时候就需要使用事件序列数据中的连接复用事件中的连接的url和目标IP地址来判断是不是被劫持的请求。

如何采集数据

字节码插桩原理

字节码插桩涉及到Android的打包构建流程。首先我们看下Android应用程序的打包流程,如下图:

image.png

从上图可知,我们只需要在 javac 之后 dex 之前遍历所有的字节码文件,并按照一定的规则过滤修改就可以实现字节码的插桩。

从Android Gradle 1.5.0 开始,Google官方提供了Transform API。通过Transform API,允许第三方以插件的形式,在Android应用程序打包成dex文件之前的编译过程中操作.class文件。

image.png

Android编译器中的TaskManager将每个Transform串起来,第一个Transform接收来自javac编译的结果,以及已经拉取到本地的第三方sdk(jar、aar),还有resource资源。这些编译的中间产物,在Transform组成的链条上流动,每个Transform节点可以对class进行处理再传递给下一个Transform。常见的混淆、Desugar等的实现就是封装在一个个Transform中。而自定义的Tranform会插入到这个Transform链条的最前面,所以开启混淆的情况下通过自定义Transform对字节码进行修改也是先修改字节码再混淆。

网络库调研

除了系统自带的网络库HttpUrlConnection,在android平台还有很多优秀的第三方网络库,大部分App开发会使用第三方的网络库来发起网络请求。

image.png

从上表中主流网络库的底层实现来看,我们只要支持OkHttp、HttpUrlConnection和HttpClinet的数据采集就能满足主流网络库的性能监控需求。

image.png

我们对应用市场上Top1000的App进行了分析,按集成数量排序依次是okhttp3&okhttp4、volley(HttpUrlConnection)、okhttp2和httpclient。其中okhttp网络库占比将近80%,所以我们优先实现了okhttp网络库的监控实现。

okhttp网络库的监控实现

okhttp网络库家族主要包括okhttp2、okhttp3和okhttp4。其中okhttp3版本分布众多,底层实现变化也最多,而okhttp2的底层实现和okhttp3的早期版本相近,okhttp4是okhttp3的kotlin版本的实现。所以我们主要介绍下okhttp3上的监控实现。

image.png

上图是okhttp3.12.0版本的实现框架,我们在网络库的具体逻辑里注入代码来采集需要的数据。

okhttp3版本众多,从3.0.0-3.14.9已经有超过40个版本,对于每一个代码注入的位置都需要确保再各个版本上能正常工作。所以实现okhttp3的无痕埋点,版本适配需要耗费大量的工作。

数据上报

数据上报,除了需要考虑加密、鉴权、压缩等方面,还需要能确保尽可能少的丢失日志,同时还需要控制资源的占用来降低对上层业务的影响。具体实现主要包括两方面:

• 缓存:支持内存缓存和磁盘缓存两级缓存。需要实现业务隔离,多个业务使用缓存功能时可以做到互不影响。
• 上报:由于APM产生的日志较多,为了控制并发数和内存,我们使用了一个业务共享的线程池和调度队列。调度队列最多缓存10条批量日志,如果超出10条会立即将日志放入磁盘缓存。另外在上报前提供了日志预处理的开放接口方便业务层对日志做处理,比如抽样、聚合等功能。

后续计划

EMAS网络性能监控已经对外开放,产品详情:https://www.aliyun.com/product/emascrash/apm 后续我们会根据客户实际需求去逐步完善功能。下一步计划实现的需求包括:
• 支持HttpUrlConnection、HttpClient等网络库。
• 支持body数据的采集上报,让客户可以感知、定位和解决在网络连通性正常,但服务端下发异常数据导致端上业务出现异常的问题。
• 支持日志数据端上预聚合,降低服务端存储压力。
• 支持socket请求的监控。

欢迎大家积极留言,提出你们的宝贵意见和建议,非常感谢!钉钉搜索35248489,加入阿里云云原生应用研发平台EMAS技术交流群,探讨最新最热门的应用研发技术和实践。

相关实践学习
通过轻量消息队列(原MNS)主题HTTP订阅+ARMS实现自定义数据多渠道告警
本场景将自定义告警信息同时分发至多个通知渠道的需求,例如短信、电子邮件及钉钉群组等。通过采用轻量消息队列(原 MNS)的主题模型的HTTP订阅方式,并结合应用实时监控服务提供的自定义集成能力,使得您能够以简便的配置方式实现上述多渠道同步通知的功能。
相关文章
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
314 5
|
2月前
|
数据采集 监控 API
告别手动埋点!Android 无侵入式数据采集方案深度解析
传统的Android应用监控方案需要开发者在代码中手动添加埋点,不仅侵入性强、工作量大,还难以维护。本文深入探讨了基于字节码插桩技术的无侵入式数据采集方案,通过Gradle插件 + AGP API + ASM的技术组合,实现对应用性能、用户行为、网络请求等全方位监控,真正做到零侵入、易集成、高稳定。
552 44
|
5月前
|
数据采集 存储 算法
MyEMS 开源能源管理系统:基于 4G 无线传感网络的能源数据闭环管理方案
MyEMS 是开源能源管理领域的标杆解决方案,采用 Python、Django 与 React 技术栈,具备模块化架构与跨平台兼容性。系统涵盖能源数据治理、设备管理、工单流转与智能控制四大核心功能,结合高精度 4G 无线计量仪表,实现高效数据采集与边缘计算。方案部署灵活、安全性高,助力企业实现能源数字化与碳减排目标。
174 0
|
3月前
|
存储 网络协议 数据库
脑控网络设计方案
本内容详细描述了一个虚构的“脑控通信网络”系统架构及通信流程,涵盖核心网络组成、用户开户流程、心灵感应终端注册、跨网络通信机制,以及脑控网与互联网、移动网的数据交互方式。内容包含模拟的通信协议设计、数据包标识、网络路由机制等技术细节,整体基于作者原创的设定,用于探讨未来通信的可能性。
207 74
|
数据采集 数据安全/隐私保护
脑控网络设计方案续写
本文补充说明了普通设备通过脑控终端热点接入互联网的数据传输流程,涵盖连接认证、数据包标识、核心网绑定与编号生成、数据转发及断开连接的完整过程,详述了设备间通信、验证、路由与逻辑删除机制,完善了脑控网络与普通互联网交互的技术闭环。
|
2月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
236 4
|
9月前
|
运维 监控 算法
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
|
3月前
|
传感器 数据采集 存储
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)
|
5月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
148 2
|
6月前
|
存储 监控 网络协议
HarmonyOS NEXT实战:网络状态监控
本教程介绍如何在HarmonyOS Next中使用@ohos.net.connection模块实现网络状态监控,并通过AppStorage进行状态管理,适用于教育场景下的网络检测功能开发。
277 2