Skip to main content

Advertisement

Log in

Extended Reality Guidelines for Supporting Autism Interventions Based on Stakeholders’ Needs

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

While Extended Reality (XR) autism research, ranging from Augmented to Virtual Reality, focuses on socio-emotional abilities and autistic children requiring low support, common interventions address the entire spectrum and focus on other abilities, including perceptual abilities. Based on these observations, this paper first addresses common practitioners’ interventions, and then suggests XR use cases and guidelines to better support them. To do so, 34 interviews were conducted with stakeholders, mainly including practitioners, and then analyzed. Emerging XR use cases were compared with the findings from two former systematic literature reviews, and emerging design guidelines were compared with the findings from a literature survey that we conducted. Findings suggest that collaborative XR sensory-based and mediation approaches could benefit the entire spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. This article uses autism stakeholders’ preferences in terms of terminology, such as identity-first language (e.g., autistic people) (Bottema-Beutel et al., 2021).

  2. The Tamis address list details practitioners and associations specialized on autism in Ile de France –— tamis-autisme.org.

References

  • Adjorlu, A., Hoeg, E. R., Mangano, L., & Serafin, S. (2017). daily living skills training in virtual reality to help children with autism spectrum disorder in a real shopping scenario. In 2017 IEEE international symposium on mixed and augmented reality (ISMAR-Adjunct) (pp. 294–302). Nantes, France: IEEE. https://doi.org/10.1109/ISMAR-Adjunct.2017.93

  • Alcorn, A. M., Pain, H., & Good, J. (2014). Motivating children’s initiations with novelty and surprise: initial design recommendations for autism. In Proceedings of the 2014 conference on Interaction design and children - IDC ’14 (pp. 225–228). Aarhus, Denmark: ACM Press. https://doi.org/10.1145/2593968.2610458

  • American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition.). American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596

  • Aruanno, B., Garzotto, F., Torelli, E., & Vona, F. (2018). HoloLearn: Wearable Mixed Reality for People with Neurodevelopmental Disorders (NDD). In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 40–51). ACM. https://doi.org/10.1145/3234695.3236351

  • Bai, Z., Blackwell, A. F., & Coulouris, G. (2015). Using Augmented reality to elicit pretend play for children with autism. IEEE Transactions on Visualization and Computer Graphics, 21(5), 598–610. https://doi.org/10.1109/TVCG.2014.2385092

    Article  Google Scholar 

  • Bartoli, L., Garzotto, F., Gelsomini, M., Oliveto, L., & Valoriani, M. (2014). Designing and evaluating touchless playful interaction for ASD children. In Proceedings of the 2014 conference on Interaction design and children - IDC ’14 (pp. 17–26). ACM Press. https://doi.org/10.1145/2593968.2593976

  • Berenguer, C., Baixauli, I., Gómez, S., Andrés, M. D. E. P., & De Stasio, S. (2020). Exploring the impact of augmented reality in children and adolescents with autism spectrum disorder: a systematic review. International Journal of Environmental Research and Public Health, 17(17), 6143. https://doi.org/10.3390/ijerph17176143

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardini, S., Poraysak-Pomsta, K., & Sampath, H. (2013). Designing an intelligent virtual agent for social communication in autism. In Proceedings of the ninth AAAI conference on artificial intelligence and interactive digital entertainment (AIIDE013) (pp. 9–15). Boston, MA, USA.

  • Biocca, F. (1997). The Cyborg’s Dilemma: Progressive Embodiment in Virtual Environments. Journal of Computer Mediated Communication. https://doi.org/10.1111/j.1083-6101.1997.tb00070.x

    Article  Google Scholar 

  • Boehm, A. E. & Psychological Corporation. (2000). Boehm test of basic concepts: Boehm-3 kit form E. Psychological Corp.

  • Bottema-Beutel, K., Kapp, S. K., Lester, J. N., Sasson, N. J., & Hand, B. N. (2021). Avoiding ableist language: Suggestions for autism researchers. Autism in Adulthood, 3(1), 18–29. https://doi.org/10.1089/aut.2020.0014

    Article  PubMed  PubMed Central  Google Scholar 

  • Bozgeyikli, E., Bozgeyikli, L., Raij, A., Katkoori, S., Alqasemi, R., & Dubey, R. (2016). Virtual reality interaction techniques for individuals with autism spectrum disorder: Design considerations and preliminary results. In M. Kurosu (Ed.), Human-computer interaction. interaction platforms and techniques (Vol. 9732, pp. 127–137). Springer International Publishing. https://doi.org/10.1007/978-3-319-39516-6_12

  • Bozgeyikli, L., Raij, A., Katkoori, S., & Alqasemi, R. (2018). A survey on virtual reality for individuals with autism spectrum disorder: Design considerations. IEEE Transactions on Learning Technologies, 11(2), 133–151. https://doi.org/10.1109/TLT.2017.2739747

    Article  Google Scholar 

  • Bradley, R., & Newbutt, N. (2018). Autism and virtual reality head-mounted displays: A state of the art systematic review. Journal of Enabling Technologies, 12(3), 101–113. https://doi.org/10.1108/JET-01-2018-0004

    Article  Google Scholar 

  • Brosnan, M., Good, J., Parsons, S., & Yuill, N. (2019). Look up! Digital technologies for autistic people to support interaction and embodiment in the real world. Research in Autism Spectrum Disorders, 58, 52–53. https://doi.org/10.1016/j.rasd.2018.11.010

    Article  Google Scholar 

  • Brown, S. A., Silvera-Tawil, D., Gemeinboeck, P., & McGhee, J. (2016). The case for conversation: a design research framework for participatory feedback from autistic children. In Proceedings of the 28th Australian conference on computer-human interaction - OzCHI ’16 (pp. 605–613). ACM Press. https://doi.org/10.1145/3010915.3010934

  • Brun, A. (2013). L’acte de création et ses processus dans les médiations thérapeutiques pour enfants autistes et psychotiques. Enfances & Psy, 61(4), 109. https://doi.org/10.3917/ep.061.0109

    Article  Google Scholar 

  • Cai, Y., Chia, N. K. H., Thalmann, D., Kee, N. K. N., Zheng, J., & Thalmann, N. M. (2013). Design and development of a virtual dolphinarium for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 208–217. https://doi.org/10.1109/TNSRE.2013.2240700

    Article  PubMed  Google Scholar 

  • Carlier, S., Van der Paelt, S., Ongenae, F., De Backere, F., & De Turck, F. (2020). Empowering children with ASD and their parents: design of a serious game for anxiety and stress reduction. Sensors, 20(4), 966. https://doi.org/10.3390/s20040966

    Article  PubMed  PubMed Central  Google Scholar 

  • Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. SAGE.

    Google Scholar 

  • Chen, C.-H., Lee, I.-J., & Lin, L.-Y. (2016). Augmented reality-based video-modeling storybook of nonverbal facial cues for children with autism spectrum disorder to improve their perceptions and judgments of facial expressions and emotions. Computers in Human Behavior, 55, 477–485. https://doi.org/10.1016/j.chb.2015.09.033

    Article  Google Scholar 

  • Cihak, D. F., Moore, E. J., Wright, R. E., McMahon, D. D., Gibbons, M. M., & Smith, C. (2016). Evaluating augmented reality to complete a chain task for elementary students with autism. Journal of Special Education Technology, 31(2), 99–108. https://doi.org/10.1177/0162643416651724

    Article  Google Scholar 

  • Constantin, A., Johnson, H., Smith, E., Lengyel, D., & Brosnan, M. (2017). Designing computer-based rewards with and for children with autism spectrum disorder and/or intellectual disability. Computers in Human Behavior, 75, 404–414. https://doi.org/10.1016/j.chb.2017.05.030

    Article  Google Scholar 

  • Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C. (1992). The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM, 35(6), 64–72. https://doi.org/10.1145/129888.129892

    Article  Google Scholar 

  • Dautenhahn, K. (2000). Design issues on interactive environments for children with autism. In Proc. 3rd intl conf. disability, virtual reality & assoc. tech, Alghero, Italy, 153–159.

  • Dechsling, A., Shic, F., Zhang, D., Marschik, P. B., Esposito, G., Orm, S., et al. (2021). Virtual reality and naturalistic developmental behavioral interventions for children with autism spectrum disorder. Research in Developmental Disabilities, 111, 103885. https://doi.org/10.1016/j.ridd.2021.103885

    Article  PubMed  Google Scholar 

  • Duris, O., & Clément, M.-N. (2018). Le robot Nao comme support relationnel et de dynamique groupale auprès d’enfants porteurs de troubles du spectre autistique. In Robots, de nouveaux partenaires de soins psychiques (pp. 67–76). ERES. https://doi.org/10.3917/eres.tisse.2018.02.0067

  • Engeström, Y., Miettinen, R., & Punamäki-Gitai, R.-L. (Eds.). (1999). Perspectives on activity theory. Presented at the international congress for research on activity theory. Cambridge University Press.

  • Escobedo, L., Tentori, M., Quintana, E., Favela, J., & Garcia-Rosas, D. (2014). Using augmented reality to help children with autism stay focused. IEEE Pervasive Computing, 13(1), 38–46. https://doi.org/10.1109/MPRV.2014.19

    Article  Google Scholar 

  • Finkelstein, S., Barnes, T., Wartell, Z., & Suma, E. A. (2013). Evaluation of the exertion and motivation factors of a virtual reality exercise game for children with autism. In 2013 1st workshop on virtual and augmented assistive technology (VAAT) (pp. 11–16). IEEE. https://doi.org/10.1109/VAAT.2013.6786186

  • Flanagan, J. C. (1954). The critical incident technique. Psychological Bulletin, 51(4), 327–358. https://doi.org/10.1037/h0061470

    Article  PubMed  Google Scholar 

  • Fletcher-Watson, S., Adams, J., Brook, K., Charman, T., Crane, L., Cusack, J., et al. (2019). Making the future together: Shaping autism research through meaningful participation. Autism, 23(4), 943–953. https://doi.org/10.1177/1362361318786721

    Article  PubMed  Google Scholar 

  • Flippin, M., Reszka, S., & Watson, L. R. (2010). Effectiveness of the picture exchange communication system (PECS) on communication and speech for children with autism spectrum disorders: A meta-analysis. American Journal of Speech-Language Pathology, 19(2), 178–195. https://doi.org/10.1044/1058-0360(2010/09-0022)

    Article  PubMed  Google Scholar 

  • Frauenberger, C., Good, J., & Keay-Bright, W. (2011). Designing technology for children with special needs: Bridging perspectives through participatory design. CoDesign, 7(1), 1–28. https://doi.org/10.1080/15710882.2011.587013

    Article  Google Scholar 

  • Frith, U. (1989). Autism: Explaining the enigma. Basil Blackwell.

    Google Scholar 

  • Garzotto, F., & Gelsomini, M. (2018). Magic room: A smart space for children with neurodevelopmental disorder. IEEE Pervasive Computing, 17(1), 38–48. https://doi.org/10.1109/MPRV.2018.011591060

    Article  Google Scholar 

  • Garzotto, F., Gelsomini, M., Occhiuto, D., Matarazzo, V., & Messina, N. (2017). Wearable immersive virtual reality for children with disability: A case study. In Proceedings of the 2017 conference on interaction design and children - IDC ’17 (pp. 478–483). ACM. https://doi.org/10.1145/3078072.3084312

  • Gelsomini, M., Cosentino, G., Spitale, M., Gianotti, M., Fisicaro, D., Leonardi, G., et al. (2019). Magika, a multisensory environment for play, education and inclusion. In Extended abstracts of the 2019 CHI conference on human factors in computing systems (pp. 1–6). ACM. https://doi.org/10.1145/3290607.3312753

  • Gent, E. (2016). Are virtual reality headsets safe for kids? livescience.com. Retrieved June 13, 2021, from https://www.livescience.com/56346-are-virtual-reality-headsets-safe-for-kids.html.

  • Gepner, B. (2018). Ralentir le monde pour mieux le percevoir : Un nouveau traitement pour les enfants autistes ? Revue Francophone D’orthoptie, 11(3), 153–156. https://doi.org/10.1016/j.rfo.2018.08.003

    Article  Google Scholar 

  • Grandin, T. (2009). How does visual thinking work in the mind of a person with autism? A personal account. Philosophical Transactions of the Royal Society B, 364(1522), 1437–1442. https://doi.org/10.1098/rstb.2008.0297

    Article  Google Scholar 

  • Griffith, G. M., Totsika, V., Nash, S., & Hastings, R. P. (2012). ‘I just don’t fit anywhere’: Support experiences and future support needs of individuals with Asperger syndrome in middle adulthood. Autism, 16(5), 532–546. https://doi.org/10.1177/1362361311405223

    Article  PubMed  Google Scholar 

  • Grossard, C., Hun, S., Dapogny, A., Juillet, E., Hamel, F., Jean-Marie, H., et al. (2019). teaching facial expression production in autism: The serious game JEMImE. Creative Education, 10(11), 2347–2366. https://doi.org/10.4236/ce.2019.1011167

    Article  Google Scholar 

  • Grynszpan, O., Weiss, P. L., Perez-Diaz, F., & Gal, E. (2014). Innovative technology-based interventions for autism spectrum disorders: A meta-analysis. Autism, 18(4), 346–361. https://doi.org/10.1177/1362361313476767

    Article  PubMed  Google Scholar 

  • Halabi, O., Abou El-Seoud, S., Alja’am, J., Alpona, H., Al-Hemadi, M., & Al-Hassan, D. (2017). Design of immersive virtual reality system to improve communication skills in individuals with autism. International Journal of Emerging Technologies in Learning (iJET), 12(05), 50. https://doi.org/10.3991/ijet.v12i05.6766

    Article  Google Scholar 

  • Haute Autorité de Santé. (2018). Trouble du spectre de l’autisme Signes d’alerte, repérage, diagnostic et évaluation chez l’enfant et l’adolescent Méthode Recommandations pour la pratique clinique (p. 45). Saint-Denis, La Plaine.

  • Ip, H. H. S., Wong, S. W. L., Chan, D. F. Y., Byrne, J., Li, C., Yuan, V. S. N., et al. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers & Education, 117, 1–15. https://doi.org/10.1016/j.compedu.2017.09.010

    Article  Google Scholar 

  • Kerns, K. A., Macoun, S., MacSween, J., Pei, J., & Hutchison, M. (2017). Attention and working memory training: A feasibility study in children with neurodevelopmental disorders. Applied Neuropsychology: Child, 6(2), 120–137. https://doi.org/10.1080/21622965.2015.1109513

    Article  PubMed  Google Scholar 

  • Khowaja, K., Banire, B., Al-Thani, D., Sqalli, M. T., Aqle, A., Shah, A., & Salim, S. S. (2020). Augmented reality for learning of children and adolescents with autism spectrum disorder (ASD): A systematic review. IEEE Access, 8, 78779–78807. https://doi.org/10.1109/ACCESS.2020.2986608

    Article  Google Scholar 

  • Kientz, J. A., Goodwin, M. S., Hayes, G. R., & Abowd, G. D. (2013). Interactive technologies for autism. Synthesis Lectures on Assistive, Rehabilitative, and Health-Preserving Technologies, 2(2), 1–177. https://doi.org/10.2200/S00533ED1V01Y201309ARH004

    Article  Google Scholar 

  • Klein, N., & Kemper, K. J. (2016). Integrative approaches to caring for children with autism. Current Problems in Pediatric and Adolescent Health Care, 46(6), 195–201. https://doi.org/10.1016/j.cppeds.2015.12.004

    Article  PubMed  Google Scholar 

  • Koirala, A., Yu, Z., Schiltz, H., Van Hecke, A., Koth, K. A., & Zheng, Z. (2019). An exploration of using virtual reality to assess the sensory abnormalities in children with autism spectrum disorder. In Proceedings of the interaction design and children - IDC ’19 (pp. 293–300). ACM Press. https://doi.org/10.1145/3311927.3323118

  • Krishnappa Babu, P. R., Oza, P., & Lahiri, U. (2018). Gaze-sensitive virtual reality based social communication platform for individuals with autism. IEEE Transactions on Affective Computing, 9(4), 450–462. https://doi.org/10.1109/TAFFC.2016.2641422

    Article  Google Scholar 

  • Kuriakose, S., & Lahiri, U. (2017). Design of a physiology-sensitive VR-Based social communication platform for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8), 1180–1191. https://doi.org/10.1109/TNSRE.2016.2613879

    Article  PubMed  Google Scholar 

  • Lallemand, C., & Gronier, G. (2016). Méthodes de design UX: 30 méthodes fondamentales pour concevoir et évaluer les systèmes interactifs. Eyrolles.

    Google Scholar 

  • Lancioni, G. E., Cuvo, A. J., & O’Reilly, M. F. (2002). Snoezelen: An overview of research with people with developmental disabilities and dementia. Disability and Rehabilitation, 24(4), 175–184. https://doi.org/10.1080/09638280110074911

    Article  PubMed  Google Scholar 

  • Lang, R., O’Reilly, M. F., Sigafoos, J., Machalicek, W., Rispoli, M., Shogren, K., et al. (2010). Review of teacher involvement in the applied intervention research for children with autism spectrum disorders. Education and Training in Autism and Developmental Disabilities, 45(2), 268–283.

    Google Scholar 

  • Lord, C., Brugha, T. S., Charman, T., Cusack, J., Dumas, G., Frazier, T., et al. (2020). Autism spectrum disorder. Nature Reviews Disease Primers, 6(1), 5. https://doi.org/10.1038/s41572-019-0138-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenzo, G., Lledó, A., Arráez-Vera, G., & Lorenzo-Lledó, A. (2019). The application of immersive virtual reality for students with ASD: A review between 1990–2017. Education and Information Technologies, 24(1), 127–151. https://doi.org/10.1007/s10639-018-9766-7

    Article  Google Scholar 

  • Lovaas, O. I. (1987). Behavioral treatment and normal educational and intellectual functioning in young autistic children. Journal of Consulting and Clinical Psychology, 55(1), 3–9. https://doi.org/10.1037/0022-006X.55.1.3

    Article  PubMed  Google Scholar 

  • Magrini, M., Curzio, O., Carboni, A., Moroni, D., Salvetti, O., & Melani, A. (2019). Augmented interaction systems for supporting autistic children. Evolution of a multichannel expressive tool: The SEMI project feasibility study. Applied Sciences, 9(15), 3081. https://doi.org/10.3390/app9153081

  • Malihi, M., Nguyen, J., Cardy, R. E., Eldon, S., Petta, C., & Kushki, A. (2020). Short report: Evaluating the safety and usability of head-mounted virtual reality compared to monitor-displayed video for children with autism spectrum disorder. Autism. https://doi.org/10.1177/1362361320934214

    Article  PubMed  Google Scholar 

  • Manju, T., Padmavathi, S., & Tamilselvi, D. (2018). A rehabilitation therapy for autism spectrum disorder using virtual reality. In G. P. Venkataramani, K. Sankaranarayanan, S. Mukherjee, K. Arputharaj, & S. Sankara Narayanan (Eds.), Smart secure systems – IoT and analytics perspective (Vol. 808, pp. 328–336). Springer Singapore. https://doi.org/10.1007/978-981-10-7635-0_26

  • Marto, A., Almeida, H. A., & Gonçalves, A. (2019). Using augmented reality in patients with autism: A systematic review. In J. M. R. S. Tavares & R. M. Natal Jorge (Eds.), VipIMAGE 2019 (Vol. 34, pp. 454–463). Springer International Publishing. https://doi.org/10.1007/978-3-030-32040-9_46

  • Maskey, M., Rodgers, J., Grahame, V., Glod, M., Honey, E., Kinnear, J., et al. (2019). A randomised controlled feasibility trial of immersive virtual reality treatment with cognitive behaviour therapy for specific phobias in young people with autism spectrum disorder. Journal of Autism and Developmental Disorders, 49(5), 1912–1927. https://doi.org/10.1007/s10803-018-3861-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazurek, M. O., Engelhardt, C. R., & Clark, K. E. (2015). Video games from the perspective of adults with autism spectrum disorder. Computers in Human Behavior, 51, 122–130. https://doi.org/10.1016/j.chb.2015.04.062

    Article  Google Scholar 

  • Mesa-Gresa, P., Gil-Gómez, H., Lozano-Quilis, J.-A., & Gil-Gómez, J.-A. (2018). Effectiveness of virtual reality for children and adolescents with autism spectrum disorder: An evidence-based systematic review. Sensors, 18(8), 2486. https://doi.org/10.3390/s18082486

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesibov, G. B., Shea, V., & Schopler, E. (2004). The TEACCH approach to autism spectrum disorders. Kluwer Academic/Plenum Publishers.

    Book  Google Scholar 

  • Midgley, N., Mortimer, R., Cirasola, A., Batra, P., & Kennedy, E. (2021). The evidence-base for psychodynamic psychotherapy with children and adolescents: A narrative synthesis. Frontiers in Psychology, 12, 662671. https://doi.org/10.3389/fpsyg.2021.662671

    Article  PubMed  PubMed Central  Google Scholar 

  • Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77, 1321–1329.

    Google Scholar 

  • Miller, H. L., & Bugnariu, N. L. (2016). Level of immersion in virtual environments impacts the ability to assess and teach social skills in autism spectrum disorder. Cyberpsychology, Behavior, and Social Networking, 19(4), 246–256. https://doi.org/10.1089/cyber.2014.0682

    Article  PubMed  Google Scholar 

  • Montessori, M., & George, A. E. (1964). The Montessori method. Schocken Books.

    Google Scholar 

  • Montoya, D., & Bodart, S. (2009). Le programme Makaton auprès d’un enfant porteur d’autisme : Le cas de Julien. Développements, 3(3), 15. https://doi.org/10.3917/devel.003.0015

    Article  Google Scholar 

  • Mora-Guiard, J., Crowell, C., Pares, N., & Heaton, P. (2017). Sparking social initiation behaviors in children with Autism through full-body Interaction. International Journal of Child-Computer Interaction, 11, 62–71. https://doi.org/10.1016/j.ijcci.2016.10.006

    Article  Google Scholar 

  • Newbutt, N. A. (2013). Exploring communication and representation of the self in a virtual world by young people with autism. University College Dublin.

    Google Scholar 

  • Newbutt, N., Bradley, R., & Conley, I. (2020). Using virtual reality head-mounted displays in schools with autistic children: Views, experiences, and future directions. Cyberpsychology, Behavior, and Social Networking, 23(1), 23–33. https://doi.org/10.1089/cyber.2019.0206

    Article  PubMed  Google Scholar 

  • Newbutt, N., Sung, C., Kuo, H.-J., Leahy, M. J., Lin, C.-C., & Tong, B. (2016). Brief report: A pilot study of the use of a virtual reality headset in autism populations. Journal of Autism and Developmental Disorders, 46(9), 3166–3176. https://doi.org/10.1007/s10803-016-2830-5

    Article  PubMed  Google Scholar 

  • Pajitnov, A. (1984). Tetris.

  • Pares, N., Masri, P., van Wolferen, G., & Creed, C. (2005). Achieving dialogue with children with severe autism in an adaptive multisensory interaction: The "MEDIATE’ project. IEEE Transactions on Visualization and Computer Graphics, 11(6), 734–743. https://doi.org/10.1109/TVCG.2005.88

    Article  PubMed  Google Scholar 

  • Parsons, S. (2015). Learning to work together: Designing a multi-user virtual reality game for social collaboration and perspective-taking for children with autism. International Journal of Child-Computer Interaction, 6, 28–38. https://doi.org/10.1016/j.ijcci.2015.12.002

    Article  Google Scholar 

  • Parsons, S., & Cobb, S. (2011). State-of-the-art of virtual reality technologies for children on the autism spectrum. European Journal of Special Needs Education, 26(3), 355–366. https://doi.org/10.1080/08856257.2011.593831

    Article  Google Scholar 

  • Parsons, S., & Mitchell, P. (2002). The potential of virtual reality in social skills training for people with autistic spectrum disorders: Autism, social skills and virtual reality. Journal of Intellectual Disability Research, 46(5), 430–443. https://doi.org/10.1046/j.1365-2788.2002.00425.x

    Article  PubMed  Google Scholar 

  • Parsons, S., Yuill, N., Good, J., & Brosnan, M. (2019). ‘Whose agenda? Who knows best? Whose voice?’ Co-creating a technology research roadmap with autism stakeholders. Disability & Society, 35(2), 201–234. https://doi.org/10.1080/09687599.2019.1624152

    Article  Google Scholar 

  • Parsons, T. D., Riva, G., Parsons, S., Mantovani, F., Newbutt, N., Lin, L., et al. (2017). Virtual reality in pediatric psychology. Pediatrics, 140(Supplement 2), S86–S91. https://doi.org/10.1542/peds.2016-1758I

    Article  PubMed  Google Scholar 

  • Pellicano, E., Dinsmore, A., & Charman, T. (2013). A future made together: shaping Autism research in the UK. Institute of Education, University of London. https://discovery.ucl.ac.uk/id/eprint/10017703/

  • Pellicano, E., Dinsmore, A., & Charman, T. (2014). What should autism research focus upon? Community views and priorities from the United Kingdom. Autism, 18(7), 756–770. https://doi.org/10.1177/1362361314529627

    Article  PubMed  PubMed Central  Google Scholar 

  • Piaget, J., Inhelder, B., & Weaver, H. (1969). The Psychology of the child (Nachdr.). Basic Books, Inc.

  • Porayska-Pomsta, K., Frauenberger, C., Pain, H., Rajendran, G., Smith, T., Menzies, R., et al. (2012). Developing technology for autism: An interdisciplinary approach. Personal and Ubiquitous Computing, 16(2), 117–127. https://doi.org/10.1007/s00779-011-0384-2

    Article  Google Scholar 

  • Remington, A., Hanley, M., O’Brien, S., Riby, D. M., & Swettenham, J. (2019). Implications of capacity in the classroom: Simplifying tasks for autistic children may not be the answer. Research in Developmental Disabilities, 85, 197–204. https://doi.org/10.1016/j.ridd.2018.12.006

    Article  PubMed  Google Scholar 

  • Ringland, K. E., Zalapa, R., Neal, M., Escobedo, L., Tentori, M., & Hayes, G. R. (2014). SensoryPaint: a multimodal sensory intervention for children with neurodevelopmental disorders. In Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing - UbiComp ’14 Adjunct (pp. 873–884). ACM Press. https://doi.org/10.1145/2632048.2632065

  • Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. Nature Reviews Neuroscience, 18(11), 671–684. https://doi.org/10.1038/nrn.2017.112

    Article  PubMed  Google Scholar 

  • Robins, B., Dautenhahn, K., te Boekhorst, R., & Billard, A. (2004). Effects of repeated exposure to a humanoid robot on children with autism. In S. Keates, J. Clarkson, P. Langdon, & P. Robinson (Eds.), Designing a more inclusive world (pp. 225–236). Springer London. https://doi.org/10.1007/978-0-85729-372-5_23

  • Rogers, S. J., Estes, A., Lord, C., Vismara, L., Winter, J., Fitzpatrick, A., et al. (2012). Effects of a brief early start denver model (ESDM)—Based parent intervention on toddlers at risk for autism spectrum disorders: A randomized controlled trial. Journal of the American Academy of Child & Adolescent Psychiatry, 51(10), 1052–1065. https://doi.org/10.1016/j.jaac.2012.08.003

    Article  Google Scholar 

  • Rosenfield, N. S., Lamkin, K., Re, J., Day, K., Boyd, L., & Linstead, E. (2019). A virtual reality system for practicing conversation skills for children with autism. Multimodal Technologies and Interaction, 3(2), 28. https://doi.org/10.3390/mti3020028

    Article  Google Scholar 

  • Sakka, S., Gaboriau, R., Picard, J., Redois, E., Parchantour, G., Sarfaty, L., et al. (2018). Rob’Autism: How to change autistic social skills in 20 weeks. In M. Husty & M. Hofbaur (Eds.), New trends in medical and service robots (Vol. 48, pp. 261–274). Springer International Publishing. https://doi.org/10.1007/978-3-319-59972-4_19

  • Sandbank, M., Bottema-Beutel, K., Crowley, S., Cassidy, M., Dunham, K., Feldman, J. I., et al. (2020). Project AIM: Autism intervention meta-analysis for studies of young children. Psychological Bulletin, 146(1), 1–29. https://doi.org/10.1037/bul0000215

    Article  PubMed  Google Scholar 

  • Schaaf, R. C., Toth-Cohen, S., Johnson, S. L., Outten, G., & Benevides, T. W. (2011). The everyday routines of families of children with autism: Examining the impact of sensory processing difficulties on the family. Autism, 15(3), 373–389. https://doi.org/10.1177/1362361310386505

    Article  PubMed  Google Scholar 

  • Schoen, S. A., Lane, S. J., Mailloux, Z., May-Benson, T., Parham, L. D., Smith Roley, S., & Schaaf, R. C. (2018). A systematic review of ayres sensory integration intervention for children with autism. Autism Research. https://doi.org/10.1002/aur.2046

    Article  PubMed  PubMed Central  Google Scholar 

  • Schreibman, L., Dawson, G., Stahmer, A. C., Landa, R., Rogers, S. J., McGee, G. G., et al. (2015). Naturalistic developmental behavioral interventions: Empirically validated treatments for autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(8), 2411–2428. https://doi.org/10.1007/s10803-015-2407-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Serret, S., Hun, S., Iakimova, G., Lozada, J., Anastassova, M., Santos, A., et al. (2014). Facing the challenge of teaching emotions to individuals with low- and high-functioning autism using a new serious game: A pilot study. Molecular Autism, 5(1), 37. https://doi.org/10.1186/2040-2392-5-37

    Article  PubMed  PubMed Central  Google Scholar 

  • Simões, M., Bernardes, M., Barros, F., & Castelo-Branco, M. (2018). Virtual travel training for autism spectrum disorder: Proof-of-concept interventional study. JMIR Serious Games, 6(1), e5. https://doi.org/10.2196/games.8428

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiel, K., Frauenberger, C., Hornecker, E., & Fitzpatrick, G. (2017). When empathy is not enough: Assessing the experiences of autistic children with technologies. In Proceedings of the 2017 CHI conference on human factors in computing systems—CHI’17 (pp. 2853–2864). ACM. https://doi.org/10.1145/3025453.3025785

  • Spiel, K., Frauenberger, C., Keyes, O., & Fitzpatrick, G. (2019). Agency of autistic children in technology research—A critical literature review. ACM Transactions on Computer-Human Interaction, 26(6), 1–40. https://doi.org/10.1145/3344919

    Article  Google Scholar 

  • Syriopoulou-Delli, C. K., & Stefani, A. (2021). Applications of assistive technology in skills development for people with autism spectrum disorder: A systematic review. Research, Society and Development, 10(11), 24.

    Article  Google Scholar 

  • Tang, J. S. Y., Falkmer, M., Chen, N. T. M., Bӧlte, S., & Girdler, S. (2019). Designing a serious game for youth with ASD: Perspectives from end-users and professionals. Journal of Autism and Developmental Disorders, 49(3), 978–995. https://doi.org/10.1007/s10803-018-3801-9

    Article  PubMed  Google Scholar 

  • Tarantino, L., De Gasperis, G., Mascio, T. D., & Pino, M. C. (2019). Immersive applications: What if users are in the autism spectrum? In The 17th international conference on virtual-reality continuum and its applications in industry—VRCAI ’19 (pp. 1–7). ACM. https://doi.org/10.1145/3359997.3365696

  • Tardif, C., Latzko, L., Arciszewski, T., & Gepner, B. (2017). Reducing information’s speed improves verbal cognition and behavior in autism: A 2-cases report. Pediatrics, 139(6), e20154207. https://doi.org/10.1542/peds.2015-4207

    Article  PubMed  Google Scholar 

  • Taryadi, & Kurniawan, I. (2018). The improvement of autism spectrum disorders on children communication ability with PECS method Multimedia Augmented Reality-Based. Journal of Physics: Conference Series, 947, 012009. https://doi.org/10.1088/1742-6596/947/1/012009

  • Tsikinas, S., & Xinogalos, S. (2018). Designing effective serious games for people with intellectual disabilities. In 2018 IEEE global engineering education conference (EDUCON) (pp. 1896–1903). Tenerife, Spain: IEEE. https://doi.org/10.1109/EDUCON.2018.8363467

  • Tsikinas, S., & Xinogalos, S. (2019). Design guidelines for serious games targeted to people with autism. In V. L. Uskov, R. J. Howlett, & L. C. Jain (Eds.), Smart education and e-learning 2019 (Vol. 144, pp. 489–499). Springer Singapore. https://doi.org/10.1007/978-981-13-8260-4_43

  • Virole, B. (2014). Autisme et tablettes numériques. Enfances & Psy, 63(2), 123. https://doi.org/10.3917/ep.063.0123

    Article  Google Scholar 

  • Wallace, S., Parsons, S., & Bailey, A. (2017). Self-reported sense of presence and responses to social stimuli by adolescents with autism spectrum disorder in a collaborative virtual reality environment. Journal of Intellectual & Developmental Disability, 42(2), 131–141. https://doi.org/10.3109/13668250.2016.1234032

    Article  Google Scholar 

  • Wallace, S., Parsons, S., Westbury, A., White, K., White, K., & Bailey, A. (2010). Sense of presence and atypical social judgments in immersive virtual environments: Responses of adolescents with autism spectrum disorders. Autism, 14(3), 199–213. https://doi.org/10.1177/1362361310363283

    Article  PubMed  Google Scholar 

  • Whyte, E. M., Smyth, J. M., & Scherf, K. S. (2015). Designing serious game interventions for individuals with autism. Journal of Autism and Developmental Disorders, 45(12), 3820–3831. https://doi.org/10.1007/s10803-014-2333-1

    Article  PubMed  Google Scholar 

  • Winnicott, D. W. (1999). Jeu et réalité: l’espace potentiel. Gallimard.

    Google Scholar 

  • Ying-Chun, L., & Chwen-Liang, C. (2018). The application of virtual reality technology in art therapy: A case of tilt brush. In 2018 1st IEEE international conference on knowledge innovation and invention (ICKII) (pp. 47–50). IEEE. https://doi.org/10.1109/ICKII.2018.8569081

Download references

Acknowledgments

Thanks to all participants for their time, trust, and precious help without whom this article would not have been possible. This work is part of the AudioXR4TSA project, funded by the DIM RFSI Ile de France. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Bauer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, V., Bouchara, T. & Bourdot, P. Extended Reality Guidelines for Supporting Autism Interventions Based on Stakeholders’ Needs. J Autism Dev Disord 53, 2078–2111 (2023). https://doi.org/10.1007/s10803-022-05447-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-022-05447-9

Keywords