Abstract
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. α-Neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that α-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that α-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.
This is a preview of subscription content, access via your institution
Access options
Access to this article via Institution of Civil Engineers Library is not available.
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993)
Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993)
Xu-Friedman, M. A., Harris, K. M. & Regehr, W. G. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672 (2001)
Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807–826 (2001)
Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool, 1969)
Borst, J. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996)
Atlas, D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J. Neurochem. 77, 972–985 (2001)
Koester, H. J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. 529, 625–646 (2000)
Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000)
Bergsman, J. B. & Tsien, R. W. Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1. J. Neurosci. 20, 4368–4378 (2000)
Maximov, A., Südhof, T. C. & Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456 (1999)
Ushkaryov, Y. A., Petrenko, A. G., Geppert, M. & Südhof, T. C. Neurexins: Synaptic cell surface proteins related to the α-latrotoxin receptor and laminin. Science 257, 50–56 (1992)
Geppert, M. et al. Neurexin Iα is a major α-latrotoxin receptor that cooperates in α-latrotoxin action. J. Biol. Chem. 273, 1705–1710 (1998)
Sugita, S. et al. A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154, 435–445 (2001)
Ichtchenko, K. et al. Neuroligin 1: A splice-site specific ligand for β-neurexins. Cell 81, 435–443 (1995)
Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000)
Moore, S. A. et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418, 422–425 (2002)
Levi, S. et al. Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J. Neurosci. 22, 4274–4285 (2002)
Hata, Y., Butz, S. & Südhof, T. C. CASK: A novel dlg/PSD95 homologue with an n-terminal CaM kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494 (1996)
Biederer, T. & Südhof, T. C. Mints as adaptors: Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. 275, 39803–39806 (2000)
Petrenko, A. G. et al. Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353, 65–68 (1991)
Missler, M. & Südhof, T. C. Neurexins: three genes and 1001 products. Trends Genet. 14, 20–26 (1998)
Tabuchi, K. & Südhof, T. C. Structure and evolution of neurexin genes: Insight into the mechanism of alternative splicing. Genomics 79, 849–859 (2002)
Ullrich, B., Ushkaryov, Y. A. & Südhof, T. C. Cartography of neurexins: More than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14, 497–507 (1995)
McIntire, S. L., Reimer, R. J., Schuske, K., Edwards, R. H. & Jorgensen, E. M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997)
Bellocchio, E. E., Reimer, R. J., Fremeau, R. T. & Edwards, R. H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960 (2000)
Takamori, S., Rhee, J. S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000)
Rico, B., Xu, B. & Reichardt, L. F. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nature Neurosci. 5, 225–233 (2002)
Ben-Ari, Y. Developing networks play a similar melody. Trends Neurosci. 24, 353–360 (2001)
Plitzko, D., Rumpel, S. & Gottmann, K. Insulin promotes functional induction of silent synapses in differentiating rat neocortical neurons. Eur. J. Neurosci. 14, 1412–1415 (2001)
Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W. & Feldman, J. L. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991)
McCleskey, E. W. et al. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl Acad. Sci. USA 84, 4327–4331 (1987)
Mohrmann, R., Werner, M., Hatt, H. & Gottmann, K. Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci. 19, 10004–10013 (1999)
Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996)
Singer, J. H., Bellingham, M. C. & Berger, A. J. Presynaptic inhibition of glutamatergic synaptic transmission to rat motoneurons by serotonin. J. Neurophysiol. 76, 799–807 (1996)
Iwasaki, S., Momiyama, A., Uchitel, O. D. & Takahashi, T. Developmental changes in calcium channel types mediating central synaptic transmission. J. Neurosci. 20, 59–65 (2000)
Ludwig, A., Flockerzi, V. & Hofmann, F. Regional expression and cellular localization of the α1 and β subunit of high voltage-activated calcium channels in rat brain. J. Neurosci. 17, 1339–1349 (1997)
Jun, K. et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit. Proc. Natl Acad. Sci. USA 96, 15245–15250 (1999)
Saegusa, H. et al. Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2+ channel. Proc. Natl Acad. Sci. USA 97, 6132–6137 (2000)
Ino, M. et al. Functional disorders of the sympathetic nervous system in mice lacking the α1B subunit (Cav 2.2) of N-type calcium channels. Proc. Natl Acad. Sci. USA 98, 5323–5328 (2001)
Muth, J. N., Varadi, G. & Schwartz, A. Use of transgenic mice to study voltage-dependent Ca2+-channels. Trends Pharmacol. Sci. 22, 526–532 (2001)
Fletcher, T. L., De Camilli, P. & Banker, G. Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J. Neurosci. 14, 6695–6706 (1994)
Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000)
Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002)
Biederer, T. et al. SynCAM, A synaptic cell adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002)
Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995)
Palmiter, R. D. et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615 (1982)
Zhang, W., Elsen, F., Barnbrock, A. & Richter, D. W. Postnatal development of GABAB receptor-modulation of voltage-activated Ca2+ currents in mouse brain-stem neurons. Eur. J. Neurosci. 11, 2332–2342 (1999)
Sakmann, B. & Neher, E. (eds) Single-Channel Recordings (Plenum, New York, 1995)
Bezanilla, F. & Armstrong, C. M. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70, 549–566 (1977)
Acknowledgements
We thank A. Roth, I. Leznicki, E. Borowicz, K. Fricke, C. Bertram and S. Gerke for technical assistance; K. Nebendahl for help with mouse husbandry; D. Schild and M. Rickmann for use of confocal and electron microscopes; R. Jahn for antibodies; and J. Goldstein, M. S. Brown, E. Neher, P. Brehm, D. W. Richter and H. Hatt for advice. This study was supported by grants from the NIMH (to T.C.S.) and the Deutsche Forschungsgemeinschaft (to M.M., K.G. and W.Z.).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Missler, M., Zhang, W., Rohlmann, A. et al. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423, 939–948 (2003). https://doi.org/10.1038/nature01755
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature01755