Skip to main content

Advertisement

Log in

Precision Child Health: an Emerging Paradigm for Paediatric Quality and Safety

  • Patient Safety (M Coffey, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

Precision child health (PCH) is an emerging branch of precision medicine that focuses on the unique needs of the paediatric population. A PCH approach has the potential to enhance both quality of care and patient safety. Genome-wide sequencing can be used as a specific exemplar to showcase current opportunities and forecast future developments.

Recent Findings

Information gained from genome-wide sequencing can increase awareness of common and rare medical complications. Care provided to children and their families may then shift from reactive to proactive. Pertinent categories of results from genetic testing include primary diagnostic findings, genetic modifiers of disease expression, and secondary findings. In addition, an individual’s unifying genetic diagnosis, disease subtype, and pharmacogenomic profile can all inform drug selection and treatment outcome. Recent lessons learned from the integration of genome-wide sequencing into the clinic may be generalizable to other “big data”-driven interventions.

Summary

Quality of care and patient safety are key targets of a PCH approach. The genomic revolution offers insights into this proposed new paradigm for healthcare delivery by showcasing the value of accurate diagnosis, disease subtyping with molecular markers, and awareness of individual- or family-specific risk factors for adverse outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Matlow AG, Baker GR, Flintoft V, Cochrane D, Coffey M, Cohen E, et al. Adverse events among children in Canadian hospitals: the Canadian Paediatric Adverse Events Study. CMAJ. 2012;184(13):E709–18. https://doi.org/10.1503/cmaj.112153.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet. 2018;19(5):253–68. https://doi.org/10.1038/nrg.2017.116.

    Article  CAS  PubMed  Google Scholar 

  3. Gonzaludo N, Belmont JW, Gainullin VG, Taft RJ. Estimating the burden and economic impact of pediatric genetic disease. Genet Med. 2019;21(8):1781–9. https://doi.org/10.1038/s41436-018-0398-5.

    Article  PubMed  Google Scholar 

  4. Stavropoulos DJ, Merico D, Jobling R, Bowdin S, Monfared N, Thiruvahindrapuram B, et al. Whole genome sequencing expands diagnostic utility and improves clinical management in pediatric medicine. NPJ Genom Med. 2016;1. https://doi.org/10.1038/npjgenmed.2015.12.

  5. Meng L, Pammi M, Saronwala A, Magoulas P, Ghazi AR, Vetrini F, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. 2017;171(12):e173438. https://doi.org/10.1001/jamapediatrics.2017.3438.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, et al. Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr. 2017;171(9):855–62. https://doi.org/10.1001/jamapediatrics.2017.1755.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376(1):21–31. https://doi.org/10.1056/NEJMoa1516767.

    Article  CAS  PubMed  Google Scholar 

  8. Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom Med. 2018;3:16. https://doi.org/10.1038/s41525-018-0053-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med. 2018;20(4):435–43. https://doi.org/10.1038/gim.2017.119.

    Article  CAS  PubMed  Google Scholar 

  10. • Turro E, Astle WJ, Megy K, Graf S, Greene D, Shamardina O, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020. https://doi.org/10.1038/s41586-020-2434-2 A landmark study demonstrating that the diagnosis of rare genetic conditions can be enhanced by integrating clinical testing with whole-genome sequencing and research on a national scale.

  11. Bick D, Jones M, Taylor SL, Taft RJ, Belmont J. Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. J Med Genet. 2019;56:783–91. https://doi.org/10.1136/jmedgenet-2019-106111.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21(11):2413–21. https://doi.org/10.1038/s41436-019-0554-6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Reuter MS, Chaturvedi RR, Liston E, Manshaei R, Aul RB, Bowdin S, et al. The Cardiac Genome Clinic: implementing genome sequencing in pediatric heart disease. Genet Med. 2020. https://doi.org/10.1038/s41436-020-0757-x A proof-of-concept study illustrating how genome sequencing data can be integrated into multiple facets of clinical care in a paediatric disease population.

  14. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, Vorstman JA, et al. 22q112 deletion syndrome. Nat Rev Dis Primers. 2015;1:15071. https://doi.org/10.1038/nrdp.2015.71.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bassett AS, Lowther C, Merico D, Costain G, Chow EWC, van Amelsvoort T, et al. Rare genome-wide copy number variation and expression of schizophrenia in 22q11.2 deletion syndrome. Am J Psychiatry. 2017;174(11):1054–63. https://doi.org/10.1176/appi.ajp.2017.16121417.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao Y, Diacou A, Johnston HR, Musfee FI, McDonald-McGinn DM, McGinn D, et al. Complete sequence of the 22q11.2 allele in 1,053 subjects with 22q11.2 deletion syndrome reveals modifiers of conotruncal heart defects. Am J Hum Genet. 2020;106(1):26–40. https://doi.org/10.1016/j.ajhg.2019.11.010.

    Article  CAS  PubMed  Google Scholar 

  17. Cleynen I, Engchuan W, Hestand MS, Heung T, Holleman AM, Johnston HR, et al. Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0654-3.

  18. Gong J, Wang F, Xiao B, Panjwani N, Lin F, Keenan K, et al. Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci. PLoS Genet. 2019;15(2):e1008007. https://doi.org/10.1371/journal.pgen.1008007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55. https://doi.org/10.1038/gim.2016.190.

    Article  PubMed  Google Scholar 

  20. Webber EM, Hunter JE, Biesecker LG, Buchanan AH, Clarke EV, Currey E, et al. Evidence-based assessments of clinical actionability in the context of secondary findings: updates from ClinGen's Actionability Working Group. Hum Mutat. 2018;39(11):1677–85. https://doi.org/10.1002/humu.23631.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hart MR, Biesecker BB, Blout CL, Christensen KD, Amendola LM, Bergstrom KL, et al. Secondary findings from clinical genomic sequencing: prevalence, patient perspectives, family history assessment, and health-care costs from a multisite study. Genet Med. 2019;21(5):1100–10. https://doi.org/10.1038/s41436-018-0308-x.

    Article  PubMed  Google Scholar 

  22. Haer-Wigman L, van der Schoot V, Feenstra I, Vulto-van Silfhout AT, Gilissen C, Brunner HG, et al. 1 in 38 individuals at risk of a dominant medically actionable disease. Eur J Hum Genet. 2019;27(2):325–30. https://doi.org/10.1038/s41431-018-0284-2.

    Article  PubMed  Google Scholar 

  23. Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32. https://doi.org/10.1056/NEJMoa1702752.

    Article  CAS  PubMed  Google Scholar 

  24. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. https://doi.org/10.1056/NEJMoa1706198.

    Article  CAS  PubMed  Google Scholar 

  25. • Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J, Larson A, et al. Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease. N Engl J Med. 2019;381(17):1644–52. https://doi.org/10.1056/NEJMoa1813279 An illustration of rapid creation, testing, and administration of an individualized therapy for a rare genetic condition, which challenges some of the traditional aspects of drug development and regulatory approval.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Day S, Jonker AH, Lau LPL, Hilgers RD, Irony I, Larsson K, et al. Recommendations for the design of small population clinical trials. Orphanet J Rare Dis. 2018;13(1):195. https://doi.org/10.1186/s13023-018-0931-2.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ballreich J, Ezebilo I, Sharfstein J. Affording genetic therapies in the Medicaid program. JAMA Pediatr. 2020;174:523. https://doi.org/10.1001/jamapediatrics.2020.0168.

    Article  PubMed  Google Scholar 

  28. Cohn I, Paton TA, Marshall CR, Basran R, Stavropoulos DJ, Ray PN, et al. Genome sequencing as a platform for pharmacogenetic genotyping: a pediatric cohort study. NPJ Genom Med. 2017;2:19. https://doi.org/10.1038/s41525-017-0021-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roden DM, McLeod HL, Relling MV, Williams MS, Mensah GA, Peterson JF, et al. Pharmacogenomics. Pharmacogenomics Lancet. 2019;394(10197):521–32. https://doi.org/10.1016/S0140-6736(19)31276-0.

    Article  CAS  PubMed  Google Scholar 

  30. Shrestha GS, Paneru HR, Vincent JL. Precision medicine for COVID-19: a call for better clinical trials. Crit Care. 2020;24(1):282. https://doi.org/10.1186/s13054-020-03002-5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Canada H. Spartan cube Covid-19 system (2020-05-05) Medical Device Recall. 2020. https://healthycanadians.gc.ca/recall-alert-rappel-avis/hc-sc/2020/72971r-eng.php#reason-motif. Accessed 14 June 2020.

  32. Haddow JE, Palomaki GE. ACCE: A model process for evaluating data on emerging genetic tests. In: Khoury M, Little J, Burke W, editors. Human genome epidemiology: a scientific foundation for using genetic information to improve health and prevent disease: Oxford University Press; 2003. p. 217–33.

  33. Sardella M, Belcher G. Pharmacovigilance of medicines for rare and ultrarare diseases. Ther Adv Drug Saf. 2018;9(11):631–8. https://doi.org/10.1177/2042098618792502.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kingsmore SF, Ramchandar N, James K, Niemi AK, Feigenbaum A, Ding Y, et al. Mortality in a neonate with molybdenum cofactor deficiency illustrates the need for a comprehensive rapid precision medicine system. Cold Spring Harbor Mol Case Stud. 2020;6(1). https://doi.org/10.1101/mcs.a004705.

  35. Costain G, Moore AM, Munroe L, Williams A, Zlotnik Shaul R, Rockman-Greenberg C, et al. Enzyme replacement therapy in perinatal hypophosphatasia: case report of a negative outcome and lessons for clinical practice. Mol Genet Metab Rep. 2018;14:22–6. https://doi.org/10.1016/j.ymgmr.2017.10.006.

    Article  PubMed  Google Scholar 

  36. Gottesman O, Kuivaniemi H, Tromp G, Faucett WA, Li R, Manolio TA, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013;15(10):761–71. https://doi.org/10.1038/gim.2013.72.

    Article  PubMed  PubMed Central  Google Scholar 

  37. • Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. https://doi.org/10.1038/s41586-018-0579-z A description of the UK Biobank open resource, which highlights both challenges associated with managing “big data” as well as unique opportunities for advancing precision medicine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues at The Hospital for Sick Children for thoughtful discussions related to precision child health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald D. Cohn MD or David Malkin MD.

Ethics declarations

Conflict of Interest

Gregory Costain declares that he has no conflict of interest. Ronald D. Cohn declares that he has no conflict of interest. David Malkin declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Patient Safety

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costain, G., Cohn, R.D. & Malkin, D. Precision Child Health: an Emerging Paradigm for Paediatric Quality and Safety. Curr Treat Options Peds 6, 317–324 (2020). https://doi.org/10.1007/s40746-020-00207-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-020-00207-2

KEYWORDS