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Abstract

zk-SNARK constructions that utilize an updatable universal structured reference
string remove one of the main obstacles in deploying zk-SNARKs[GKM+]. The
important work of Maller et al. [MBKM] presented Sonic - the first potentially
practical zk-SNARK with fully succinct verification for general arithmetic circuits
with such an SRS. However, the version of Sonic enabling fully succinct verification
still requires relatively high proof construction overheads. We present a universal
SNARK construction with fully succinct verification, and significantly lower prover
running time (roughly 7.5-20 times fewer group exponentiations than [MBKM] in
the fully succinct verifier mode depending on circuit structure).

Similarly to [MBKM] we rely on a permutation argument based on Bayer and
Groth [BG12]. However, we focus on “Evaluations on a subgroup rather than co-
efficients of monomials”; which enables simplifying both the permutation argument
and the arithmetization step.

1 Introduction

Due to real-world deployments of zk-SNARKs, it has become of significant interest to
have the structured reference string (SRS) be constructible in a “universal and updat-
able” fashion. Meaning that the same SRS can be used for statements about all circuits
of a certain bounded size; and that at any point in time the SRS can be updated by a
new party, such that the honesty of only one party from all updaters up to that point is
required for soundness. For brevity, let us call a zk-SNARK with such a setup process
universal.

For the purpose of this introduction, let us say a zk-SNARK for circuit satisfiability
is fully succinct if

*Most of this work was done while the first author was working at Protocol Labs.
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1. The preprocessing1 phase/SRS generation run time is quasilinear in circuit size.

2. The prover run time is quasilinear in circuit size.

3. The proof length is logarithmic2 in circuit size.

4. The verifier run time is polylogarithmic in circuit size.3

Maller et al. [MBKM] constructed for the first time a universal fully succinct zk-
SNARK for circuit satisfiability, called Sonic.

[MBKM] also give a version of Sonic with dramatically improved prover run time, at
the expense of efficient verification only in a certain amortized sense.

1.1 Our results

In this work we give a universal fully-succinct zk-SNARK with significantly improved
prover run time compared to fully-succinct Sonic.

At a high level our improvements stem from a more direct arithmetization of a circuit
as compared to the [BCC+16]-inspired arithmetization of [MBKM]. This is combined
with a permutation argument over univariate evaluations on a multiplicative subgroup
rather than over coefficients of a bivariate polynomial as in [MBKM].

In a nutshell, one reason multiplicative subgroups are useful is that several proto-
cols, including Sonic, use a permutation argument based on Bayer and Groth [BG12].
Ultimately, in the “grand product argument”, this reduces to checking relations between
coefficients of polynomials at “neighbouring monomials”.

We observe that if we think of the points x,g ·x as neighbours, where g is a generator
of a multiplicative subgroup of a field F, it is very convenient to check relations between
different polynomials at such pairs of points.

A related convenience is that multiplicative subgroups interact well with Lagrange
bases. For example, suppose H ⊂ F is a multiplicative subgroup of order n, and x ∈ H.
The polynomial Lx of degree n − 1 that vanishes on H \ {x} and has Lx(x) = 1, has a
very sparse representation of the form

Lx(X) =
cx(X

n − 1)

(X − x)
,

for a constant cx. This is beneficial when constructing an efficiently verifiable [BG12]-
style permutation argument in terms of polynomial identities.

1We use the term SNARK in this paper for what is sometimes called a “SNARK with preprocess-
ing”(see e.g. [GGPR13]) where one allows a one-time verifier computation that is polynomial rather
than polylogarithmic in the circuit size. In return, the SNARK is expected to work for all non-uniform
circuits, rather than only statements about uniform computation.

2From a theoretical point of view, polylogarithmic proof length is more natural; but logarithmic
nicely captures recent constructions with a constant number of group elements, and sometimes is a good
indication of the “practicality barrier”.

3In many definitions, only proof size is required to be polylogarithmic. For example, in the terminology
of [GGPR13], additionally requiring polylogarithmic verifier run time means the SNARK is unsubtle.
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1.2 Efficiency Analysis

We compare the performance of this work to the state of the art, both for non-universal
SNARKs and universal SNARKs. At the time of publication, the only fully succinct uni-
versal SNARK construction is (the fully-succinct version of) the Sonic protocol [MBKM].
This protocol requires the prover compute 273n G1 group exponentiations, where n is
the number of multiplication gates. In fully-succinct Sonic, every wire can only be used
in three linear relationships, requiring the addition of ‘dummy’ multiplication gates to
accommodate wires used in more than three addition gates. This increase in the multi-
plication gate count is factored into the prover computation estimate (see [MBKM] for
full details).

Our universal SNARK requires the prover to compute 5 polynomial commitments,
combined with two opening proofs to evaluate the polynomial commitments at a random
challenge point. There are two “flavours”of PlonK to suit the tastes of the user. By
increasing the proof size by two group elements, the total prover computations can be
reduced by ≈ 10%. The combined degree of the polynomials is either 9(n + a) (larger
proofs) or 11(n + a) (smaller proofs, reduced verifier work), where n is the number of
multiplication gates and a is the number of addition gates. Currently, the most effi-
cient fully-succinct SNARK construction available is Groth’s 2016 construction [Gro16],
which requires a unique, non-updateable CRS per circuit. Proof construction times are
dominated by 3n + m G1 and n G2 group exponentiations, where m is formally the
number of R1CS variables, and is typically bounded by n (for the rest of this section,
the reader may assume m = n for simplicity). If we assume that one G2 exponentia-
tion is equivalent to three G1 exponentiations, this yields 6n +m equivalent G1 group
exponentiations.

Performing a direct comparison between these SNARK arithmetisations requires
some admittedly subjective assumptions. When evaluating common circuits, we found
that the number of addition gates is 2x the number of multiplication gates, however
circuits that are optimized under the assumption that addition gates are ‘free’ (as is
common in R1CS based systems like [Gro16]) will give worse estimates.

At one extreme, for a circuit containing no addition gates and only fan-in-2 multi-
plication gates, our universal SNARK proofs require ≈ 1.1 times more prover work than
[Gro16], and ≈ 30 times fewer prover work than Sonic. If a = 2n, the ratios change to
≈ 2.25 times more prover work than [Gro16], and ≈ 10 times less work than Sonic. If
a = 5n, this changes to ≈ 3 times more work than [Gro16], and ≈ 5 times less work than
Sonic. We should note that these comparisons are only comparing the required number
of group exponentiations.

We also note that the degree of PlonK’s structured reference string is equal to the
number of gates in a circuit (if one uses the ”fast” flavour of PlonK). This is a significant
reduction in the SRS size compared to the state of the art.

When comparing proof construction, we also include the number of field multiplica-
tions for PlonK, as the number of fast-fourier-transforms required to construct proofs
is non-trivial. All other succinct universal SNARK constructions also have high FFT
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Table 1: Prover comparison. m = number of wires, n = number of multiplication gates,
a = number of addition gates

size ≤ d
SRS

size = n
CRS/SRS

prover
work

proof
length succinct universal

Groth′16 - 3n+m G1
3n+m− ℓ G1 exp,
n G2 exp

2 G1, 1 G2 ✓ ✗

Sonic (helped) 12d G1, 12d G2 12n G1 18n G1 exp 4 G1, 2 F ✗ ✓

Sonic (succinct) 4d G1, 4d G2 36n G1 273n G1 exp 20 G1, 16 F ✓ ✓

Auroralight 2d G1, 2d G2 2n G1 8n G1 exp 6 G1, 4 F ✗ ✓

This work (small) 3d G1, 1 G2 3n+ 3a G1, 1 G2
11n+ 11a G1 exp ,
≈ 54(n+ a)log(n+ a) F mul

7 G1, 6 F ✓ ✓

This work (fast prover) d G1, 1 G2 n+ a G1, 1 G2
9n+ 9a G1 exp ,
≈ 54(n+ a)log(n+ a) F mul

9 G1, 6 F ✓ ✓

transform costs, however given the difficulty of finding hard numbers, we cannot include
them in the above table. Qualitative analysis suggests that the FFTs consume slightly
less compute time than the G1 group exponentiations. More details on the number of
field multiplications are given in section 1.3.

Verifier computation per proof is shown in table 2. Only two bilinear pairing opera-
tions are required, due to the simple structure of the committed prover polynomials. In
addition, the G2 elements in each pairing are fixed, enabling optimizations that reduce
pairing computation time by ≈ 30% [CS10].

Table 2: Verifier comparison per proof, P=pairing, ℓ=num of pub inputs. For non-
succinct protocols, additional helper work is specified

verifier
work

elem. from
helper

extra verifier
work in

helper mode

Groth′16 3P , ℓ G1 exp - -

Sonic (helped) 10P 3 G1, 2 F 4P

Sonic (succinct) 13P - -

Auroralight 5P , 6 G1 exp 8 G1, 10 F 12P

This work (small) 2P , 16 G1 exp - -

This work (fast prover) 2P , 18 G1 exp - -
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1.3 Performance and Benchmarks
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Figure 1: Benchmarks for test PlonK circuits using the BN254 curve. Does not include
witness generation. Tests performed on a Surface pro 6 with 16GB RAM and a core
i7-8650U CPU, utilizing all 8 logical/4 physical cores.

Figure 1 provides some estimates for the time required to construct and verify PlonK
proofs. The benchmarks in question utilize the BN254 elliptic curve, using the Barreten-
berg ecc library.

Even for circuits with over a million gates, PlonK proofs are capable of being con-
structed on consumer-grade hardware in under 23 seconds. This marks a significant
advancement in the efficiency of universal SNARKs, which are now practical for a wide
range of real-world use-cases.
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Circuit preprocessing is a one-off computation, required for each program codified into a
PlonK circuit. This step generates the polynomial commitments to the ‘selector’ poly-
nomials required to verify proofs.

When constructing proofs, the time taken to perform the required fast fourier trans-
forms is comparable to the time taken for elliptic curve scalar multiplications. The
number of field multiplications in table 1 is obtained from 8 FFTs of size 4n, 5 FFTs of
size 2n and 12 FFTs of size n.

The number of FFT transforms can be significantly reduced, if a circuit’s preprocessed
polynomials are provided as evaluations over the 4n’th roots of unity (instead of in
Lagrange-base form). However, given this dramatically increases the amount of infor-
mation required to construct proofs, we omit this optimisation from our benchmarks.

We conclude the introduction with a comparision to relevant concurrent work.

1.4 Comparison with the randomized sumcheck approach, and Fractal/Marlin:

Roughly speaking, all succinct proving systems work by using randomness to compress
many constraint checks into one. The general way to obtain such compression, is by
taking a random linear combination of the constraints. In the case of R1CS and similar
systems, the more difficult constraints to be compressed are linear relations between the
system variables, i.e. constraints of the form < ai, x >= 0 where x ∈ Fm are the system
variables, and ai ∈ Fm represents one of the constraints.4

These are analogous to the less general “wiring constraints” in a circuit satisfiability
statement, which have the form xi = xj (e.g. when xi represents the output wire of a
gate G, and xj an input wire from G into another gate G′).

A random5 linear combination of linear constraints might have the form∑
i∈[n]

ri < ai, x >= 0

for a unifrom r ∈ F
Skipping some details, [MBKM] and the subsequent work of [Gab19] (relying on

[BCR+19]) reduce such a check to evaluating a degree n bivariate S at a random point;
such that the number of non-zero monomials in S corresponds to the number of non-
zero entries in the constraint vectors {ai}i∈[n]. [MBKM] at this point devise a clever
strategy to amortize the cost of many evaluations of S across many proofs. This variant
of [MBKM] is much more prover efficient, but not fully succinct because of the need for
the verifier to compute at least one evaluation of S by themselves.

4We emphasize that the vector ai here does not precisely correspond to one of the r1cs matrix rows,
but rather to a “flattening” of it, i.e. it is a constraint of the form y =

∑
a′
i,jxj where a′

i is one the r1cs
matrix rows.

5It is a standard derandomization trick to use powers of a single random r ∈ F rather than random
independent ri.
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Thus, the barrier to a fully succinct version of the more prover efficient version of
Sonic (and for a fully succinct version of [Gab19]), is a method to efficiently verify an
evaluation S(z, y) in the case S only contains O(n) non-zero monomials.

A significant technical contribution of the recent6 concurrent Fractal and Marlin sys-
tems [CHM+19, COS19] is a solution to this problem “in Lagrange Basis”.

Specifically, suppose that H,K are multiplicative subgroups of size O(n) of F such
that S has onlyM non-zero values onH×K; then [CHM+19, COS19] devise a protocol to
convince a succinct verifier that S(z, y) = t where the prover’s work is linear in M . This
is a good point to note that the solution to this problem by the natural generalization
of [KZG10] to a bi-variate polynomial commitment scheme would have led to O(n2)
proving time.

Coming back to PlonK, the reason we don’t require this “bi-variate evaluation break-
through” is that we focus on constant fan-in circuits rather than R1CS/unlimited ad-
dition fan-in; and thus our linear constraints are just wiring constraints that can be
reduced to a permutation check (as explained in Sections 5.2, 6). One way to interpret
the [BG12] technique is that “linear constraints that correspond to a permutation can
be more simply combined than general linear constraints”. For example, in the above
equation each constraint is multiplied by a distinct random coefficient, whereas in the
[BG12] randomization, it suffices in a sense to add the same random shift to each variable
value. (See the permutation protocol in Section 5 for details.)

Concrete comparison to Marlin While Fractal leverages the sparse bi-variate evaluation
technique in the context of transparent recursive SNARKs,Marlin focuses on constructing
a fully succinct (universal) SNARK as in this paper.

It is not completely straightforward to compare this work and [CHM+19], as we are
in the realm of concrete constants, and the basic measure both works use is different.
While we take our main parameter n to be the number of addition and multiplication
gates in a fan-in two circuit; [CHM+19] use as their main parameter the maximal number
of non-zeroes in one of the three matrices describing an R1CS. For the same value of n
PlonK outperforms Marlin, e.g. by roughly a 2x factor in prover group operations and
proof size. In the extreme case of a circuit with only multiplication gates, this would
indeed represent the performance difference between the two systems.

However, in constraint systems with “frequent large addition fan-in” Marlin may
outperform the currently specified variant7 of PlonK. For example, this happens in the
extreme case of one “fully dense” R1CS constraint ∑

j∈[m]

ajxj

 ·

 ∑
j∈[m]

bjxj

 =
∑
j∈[m]

cjxj .

where a, b, c ∈ Fm have all non-zero entries.

6In hindsight, we realized Spartan[Set] gave a similar sparse evaluation scheme for multilinear poly-
nomials prior to [CHM+19, COS19].

7It seems that the natural variants of PlonK where the addition fan-in is increased to three or four
according to the instance could outperform the current numbers given in Marlin for any R1CS.
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Morever, it seems ideas implicit in Fractal, or alternatively a “plug-in” of the men-
tioned sparse bi-variate evaluation protocol into [Gab19] will lead to improved perfor-
mance via this route; especially in cases where some of the prover work can be delegated
to an outside helper (in PlonK there is less opportunity for such delegation, as the wiring
is checked on the witness itself, whereas in [Gab19, CHM+19, COS19] it is in a sense
checked on the random coefficients of the verifier).

2 Preliminaries

2.1 Terminology and Conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate
polynomials over F of degree smaller than d. We assume all algorithms described receive
as an implicit parameter the security parameter λ.

Whenever we use the term “efficient”, we mean an algorithm running in time poly(λ).
Furthermore, we assume an “object generator” O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G1,G2,Gt, e, g1, g2, gt) where

� F is a prime field of super-polynomial size r = λω(1) .

� G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate
pairing e : G1 ×G2 → Gt.

� g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1

and G2 additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.
We often denote by [n] the integers {1, . . . , n}. We use the acronym e.w.p for “except

with probability”; i.e. e.w.p γ means with probability at least 1− γ.

universal SRS-based public-coin protocols We describe public-coin (meaning the verifier
messages are uniformly chosen) interactive protocols between a prover and verifier; when
deriving results for non-interactive protocols, we implicitly assume we can get a proof
length equal to the total communication of the prover, using the Fiat-Shamir transform/a
random oracle. Using this reduction between interactive and non-interactive protocols,
we can refer to the “proof length” of an interactive protocol.

We allow our protocols to have access to a structured reference string (SRS) that
can be derived in deterministic poly(λ)-time from an “SRS of monomials” of the form{[

xi
]
1

}
a≤i≤b

,
{[
xi
]
2

}
c≤i≤d

, for uniform x ∈ F, and some integers a, b, c, d with absolute

value bounded by poly(λ). It then follows from Bowe et al. [BGM17] that the required
SRS can be derived in a universal and updatable setup requiring only one honest par-
ticipant; in the sense that an adversary controlling all but one of the participants in
the setup does not gain more than a negl(λ) advantage in its probability of producing a
proof of any statement.
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For notational simplicity, we sometimes use the SRS srs as an implicit parameter in
protocols, and do not explicitly write it.

2.2 Analysis in the AGM model

For security analysis we will use the Algebraic Group Model of Fuchsbauer, Kiltz and
Loss[FKL18]. In our protocols, by an algebraic adversary A in an SRS-based protocol
we mean a poly(λ)-time algorithm which satisfies the following.

� For i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it also outputs a vector v
over F such that A =< v, srsi >.

Idealized verifier checks for algebraic adversaries We introduce some terminology to cap-
ture the advantage of analysis in the AGM.

First we say our srs has degree Q if all elements of srsi are of the form [f(x)]i for f ∈
F<Q[X] and uniform x ∈ F. In the following discussion let us assume we are executing a
protocol with a degree Q SRS, and denote by fi,j the corresponding polynomial for the
j’th element of srsi.

Denote by a, b the vectors of F-elements whose encodings in G1,G2 an algebraic
adversary A outputs during a protocol execution; e.g., the j’th G1 element output by A
is [aj ]1.

By a “real pairing check” we mean a check of the form

(a · T1) · (T2 · b) = 0

for some matrices T1, T2 over F. Note that such a check can indeed be done efficiently
given the encoded elements and the pairing function e : G1 ×G2 → Gt.

Given such a “real pairing check”, and the adversary A and protocol execution during
which the elements were output, define the corresponding “ideal check” as follows. Since
A is algebraic when he outputs [aj ]i he also outputs a vector v such that, from linearity,
aj =

∑
vℓfi,ℓ(x) = Ri,j(x) for Ri,j(X) :=

∑
vℓfi,ℓ(X). Denote, for i ∈ {1, 2} the vector

of polynomials Ri = (Ri,j)j . The corresponding ideal check, checks as a polynomial
identity whether

(R1 · T1) · (T2 ·R2) ≡ 0

The following lemma is inspired by [FKL18]’s analysis of [Gro16], and tells us that
for soundness analysis against algebraic adversaries it suffices to look at ideal checks.
Before stating the lemma we define the Q-DLOG assumption similarly to [FKL18].

Definition 2.1. Fix integer Q. The Q-DLOG assumption for (G1,G2) states that given

[1]1 , [x]1 , . . . ,
[
xQ

]
1
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negl(λ).
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Lemma 2.2. Assume the Q-DLOG for (G1,G2). Given an algebraic adversary A partic-
ipating in a protocol with a degree Q SRS, the probability of any real pairing check passing
is larger by at most an additive negl(λ) factor than the probability the corresponding ideal
check holds.

Proof. Let γ be the difference between the satisfiability of the real and ideal check. We
describe an adversary A∗ for the Q-DLOG problem that succeeds with probability γ;
this implies γ = negl(λ). A∗ receives the challenge

[1]1 , [x]1 , . . . ,
[
xQ

]
1
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

and constructs using group operations the correct SRS for the protocol. Now A∗ runs
the protocol with A, simulating the verifier role. Note that as A∗ receives from A the
vectors of coefficients v, he can compute the polynomials {Ri,j} and check if we are in
the case that the real check passed but ideal check failed. In case we are in this event,
A∗ computes

R := (R1 · T1)(T2 ·R2).

We have that R ∈ F<2Q[X] is a non-zero polynomial for which R(x) = 0. Thus A∗ can
factor R and find x.

Knowledge soundness in the Algebraic Group Model We say a protocol P between a
prover P and verifier V for a relation R has Knowledge Soundness in the Algebraic
Group Model if there exists an efficient E such that the probability of any algebraic
adversary A winning the following game is negl(λ).

1. A chooses input x and plays the role of P in P with input x.

2. E given access to all of A’s messages during the protocol (including the coefficients
of the linear combinations) outputs ω.

3. A wins if

(a) V outputs acc at the end of the protocol, and

(b) (x, ω) /∈ R.

3 A batched version of the [KZG10] scheme

Crucial to the efficiency of our protocol is a batched version of the [KZG10] polyno-
mial commitment scheme (PCS) similar to Appendix C of [MBKM], allowing to query
multiple committed polynomials at multiple points. We begin by defining polynomial
commitment schemes in a manner conducive to our protocol. Specifically, we define the
open procedure in a batched setting having multiple polynomials and evaluation points.

Definition 3.1. A d-polynomial commitment scheme consists of

10



� gen(d) - a randomized algorithm that outputs an SRS srs.

� com(f, srs) - that given a polynomial f ∈ F<d[X] returns a commitment cm to f .

� A public coin protocol open between parties PPC and VPC. PPC is given f1, . . . , ft ∈
F<d[X]. PPC and VPC are both given integer t = poly(λ), cm1, . . . , cmt - the alleged
commitments to f1, . . . , ft, z1, . . . , zt ∈ F and s1, . . . , st ∈ F - the alleged correct
openings f1(z1), . . . , ft(zt). At the end of the protocol VPC outputs acc or rej.

such that

� Completeness: Fix integer t, z1, . . . , zt ∈ F, f1, . . . , ft ∈ F<d[X]. Suppose that
for each i ∈ [t], cmi = com(fi, srs). Then if open is run correctly with values
t, {cmi, zi, si = fi(zi)}i∈[t], VPC outputs acc with probability one.

� Knowledge soundness in the algebraic group model: There exists an effi-
cient E such that for any algebraic adversary A the probability of A winning the
following game is negl(λ) over the randomness of A and gen.

1. Given srs, A outputs t, cm1, . . . , cmt.

2. E, given access to the messages of A during the previous step, outputs f1, . . . , ft ∈
F<d[X].

3. A outputs z1, . . . , zt ∈ F, s1, . . . , st ∈ F.
4. A takes the part of PPC in the protocol open with inputs cm1, . . . , cmt, z1, . . . , zt, s1, . . . , st.

5. A wins if

– VPC outputs acc at the end of the protocol.

– For some i ∈ [t], si ̸= fi(zi).

Remark 3.2. Note that the above notion of knowledge soundness for a PCS does not
coincide with that of knowledge soundness for a relation as defined in Section 2.2. The
goal is to capture the notion of A “knowing” during commitment time the polynomial
they later answer queries about. Arguably, this could have been called binding knowledge
soundness, but we stick with the shorter term.

It’s interesting to note that the algebraic group model is crucial for allowing us to
model both binding and knowledge soundness in one clean game - without it we typically
cannot require E to return the polynomial immediately after A’s commitment. Rather,
E may require rewinding A during the open procedure for that. This is one reason why
papers that deal with generic PCS, e.g. Section 2.3 of [BDFG20], define separate notions
of knowledge soundness and binding.

3.1 The PCS

We describe the following scheme based on [KZG10, MBKM].

1. gen(d) - choose uniform x ∈ F. Output srs = ([1]1 , [x]1 , . . . ,
[
xd−1

]
1
, [1]2 , [x]2).
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2. com(f, srs) := [f(x)]1.

3. We first describe the open protocol in the case z1 = . . . = zt = z.
open({cmi} , {zi} , {si}):

(a) VPC sends random γ ∈ F.
(b) PPC computes the polynomial

h(X) :=
t∑

i=1

γi−1 · fi(X)− fi(z)

X − z

and using srs computes and sends W := [h(x)]1.

(c) VPC computes the elements

F :=
∑
i∈[t]

γi−1 · cmi, v :=

∑
i∈[t]

γi−1 · si


1

(d) VPC outputs acc if and only if

e(F − v, [1]2) · e(−W, [x− z]2) = 1.

We argue knowledge soundness for the above protocol. More precisely, we argue
the existence of an efficient E such that an algebraic adversary A can only win the
KS game w.p. negl(λ) when restricting itself to choosing z = z1 = . . . = zt.

Let A be such an algebraic adversary.

A begins by outputting cm1, . . . , cmt. Each cmi is a linear combination
∑d−1

j=0 ai,j
[
xj
]
1
.

E, who is given the coefficients {ai,j}, simply outputs the polynomials

fi(X) :=

d−1∑
j=0

ai,j ·Xj .

A now outputs z, s1, . . . , st ∈ F. Assume that for some i ∈ [t], fi(z) ̸= si. We show
that for any strategy of A from this point, Vpoly outputs acc w.p negl(λ).

In the first step of open, Vpoly chooses a random γ ∈ F. Define

f(X) :=
∑
i∈[t]

γi−1 · fi(X), s :=
∑
i∈[t]

γi−1 · si.

We have that e.w.p. t/|F|, f(z) ̸= s. Now A outputs W = H(x) for some
H ∈ F<d[X]. According to Lemma 2.2, it suffices to upper bound the probability
that the ideal check corresponding to the real pairing check in the protocol passes.
It has the form

f(X)− s ≡ H(X)(X − z).

12



The check passing implies that f(X) − s is divisible by (X − z), which implies
f(z) = s. Thus the ideal check can only pass w.p. negl(λ) over the randomness of
Vpoly, which implies the same thing for the real check according to Lemma 2.2.

The open protocol for multiple evaluation points simply consists of running in par-
allel the open protocol for each evaluation point and the polynomials evaluated
at that point. And then applying a generic method for batch randomized evalua-
tion of pairing equations. For notational simplicity we describe the open protocol
explicitly only in the case of two distinct evaluation points among z1, . . . , zt (this
also happens to be our case in the main protocol). For this, let us denote the
distinct evaluation points by z, z′ and by t1, t2 the number of polynomials and by
{fi}i∈[t1] , {f

′
i}i∈[t2] the polynomials to be evaluated at z, z′ respectively.

open({cmi}i∈[t1] , {cm
′
i}i∈[t2] , {z, z

′} , {si, s′i}):

(a) VPC sends random γ, γ′ ∈ F.
(b) PPC computes the polynomials

h(X) :=

t1∑
i=1

γi−1 · fi(X)− fi(z)

X − z

h′(X) :=

t2∑
i=1

γ′i−1 · f
′
i(X)− f ′

i(z
′)

X − z′

and using srs computes and sends W := [h(x)]1 ,W
′ := [h′(x)]1.

(c) VPC chooses random r′ ∈ F.
(d) VPC computes the element

F :=

∑
i∈[t1]

γi−1 · cmi −

∑
i∈[t1]

γi−1 · si


1

+r′·

∑
i∈[t2]

γ′i−1 · cm′
i −

∑
i∈[t2]

γ′i−1 · s′i


1


VPC computes outputs acc if and only if

e
(
F + z ·W + r′z′ ·W ′, [1]2

)
· e(−W − r′ ·W ′, [x]2) = 1.

We summarize the efficiency properties of this batched version of the [KZG10]
scheme.

Lemma 3.3. Fix positive integer d. There is a d-polynomial commitment scheme
S such that

(a) For n ≤ d and f ∈ F<n[X], computing com(f) requires n G1-exponentiations.

(b) Given z := (z1, . . . , zt) ∈ Ft, f1, . . . , ft ∈ F<d[X], denote by t∗ the number
of distinct values in z; and for i ∈ [t∗], di := max {deg(fi)}i∈Si

where Si

is the set of indices j such that zj equals the i’th distinct point in z. Let
cmi = com(fi). Then open ({cmi, fi, zi, si}) requires

i.
∑

i∈[t∗] di G1-exponentiations of PPC.

ii. t+ 2t∗ − 2 G1-exponentiations and 2 pairings of VPC.

13



4 Idealised low-degree protocols

We define a limited type of protocol between a prover and a verifier to cleanly capture and
abstract the use of a polynomial commitment scheme such as [KZG10]. In this protocol,
the prover sends low-degree polynomials to a third trusted party I. The verifier may then
ask I whether certain identities hold between the prover’s polynomials, and additional
predefined polynomials known to the verifier.

Definition 4.1. Fix positive integers d,D, t, ℓ. A (d,D, t, ℓ)-polynomial protocol is a
multiround protocol between a prover Ppoly, verifier Vpoly and trusted party I that proceeds
as follows.

1. The protocol definition includes a set of preprocessed polynomials g1, . . . , gℓ ∈
F<d[X].

2. The messages of Ppoly are sent to I and are of the form f for f ∈ F<d[X]. If Ppoly

sends a message not of this form, the protocol is aborted.

3. The messages of Vpoly to Ppoly are arbitrary (but we will concentrate on public coin
protocols where the messages are simply random coins).

4. At the end of the protocol, suppose f1, . . . , ft are the polynomials that were sent
from Ppoly to I. Vpoly may ask I if certain polynomial identities hold between
{f1, . . . , ft, g1, . . . , gℓ}. Where each identity is of the form

F (X) := G(X,h1(v1(X)), . . . , hM (vM (X))) ≡ 0,

for some hi ∈ {f1, . . . , ft, g1, . . . , gℓ}, G ∈ F[X,X1, . . . , XM ], v1, . . . , vM ∈ F<d[X]
such that F ∈ F<D[X] for every choice of f1, . . . , ft made by Ppoly when following
the protocol correctly.

5. After receiving the answers from I regarding the identities, Vpoly outputs acc if all
identities hold, and outputs rej otherwise.

Remark 4.2. A more expressive model would be to have Ppoly send messages (f, n)
for n ≤ d to I instead of just f ; and have I enforce f ∈ F<n[X]. We avoid doing
this as this extra power is not needed for our protocol, and results in reduced efficiency
as it translates to needing to use a polynomial commitment scheme with the ability to
dynamically enforce a smaller than d degree bound (as the [MBKM]-variant of [KZG10]
is able to do).

We define polynomial protocols for relations in the natural way.

Definition 4.3. Given a relation R, a polynomial protocol for R is a polynomial pro-
tocol with the following additional properties.

1. At the beginning of the protocol, Ppoly and Vpoly are both additionally given an
input x. The description of Ppoly assumes possession of ω such that (x, ω) ∈ R.
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2. Completeness: If Ppoly follows the protocol correctly using a witness ω for x,
Vpoly accepts with probability one.

3. Knowledge Soundness: There exists an efficient E, that given access to the
messages of Ppoly to I outputs ω such that, for any strategy of Ppoly, the probability
of the following event is negl(λ).

(a) Vpoly outputs acc at the end of the protocol, and

(b) (x, ω) /∈ R.

Remark 4.4. We intentionally do not define a zero-knowledge property for idealized
protocols, as achieving ZK will depend on how much information on the polynomials
sent to I is leaked in the final “compiled” protocol. This in turn depends on specific
details of the polynomial commitment scheme used for compilation.

4.1 Polynomial protocols on ranges

In our protocol Vpoly actually needs to check if certain polynomial equations hold on a
certain range of input values, rather than as a polynomial identity. Motivated by this,
for a subset S ⊂ F, we define an S-ranged (d,D, t, ℓ)-polynomial protocol identically to
a (d,D, t, ℓ)-polynomial protocol, except that the verifier asks if his identities hold on
all points of S, rather than identically. We then define ranged polynomial protocols for
relations in the exact same way as in Definition 4.3.

We show that converting a ranged protocol to a polynomial protocol only incurs one
additional prover polynomial.

Lemma 4.5. Let P be an S-ranged (d,D, t, ℓ)-polynomial protocol for R. Then we can
construct a (max {d, |S|, D − |S|} , D, t+ 1, ℓ+ 1)-polynomial protocol P∗ for R.

For the lemma, we use the following simple claim.

Claim 4.6. Fix F1, . . . , Fk ∈ F<n[X]. Fix Z ∈ F<n[X]. Suppose that for some i ∈ [k],
Z ∤ Fi. Then

1. e.w.p 1/|F| over uniform a1, . . . , ak ∈ F, Z doesn’t divide

F :=
k∑

j=1

aj · Fj .

2. Assuming Z decomposes to distinct linear factors over F, e.w.p k/|F| over uniform
a ∈ F, Z doesn’t divide

G :=

k∑
j=1

aj−1 · Fj .
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Proof. Z|F is equivalent to F mod Z = 0. Denoting R := Fi mod Z, we have that
R ̸= 0; i.e. R isn’t the zero polynomial. And we have

F =

k∑
j=1,j ̸=i

aj · Fj + ai ·R (mod Z)

Thus, for any fixing of {aj}j ̸=i there is at most one value ai ∈ F such that F mod Z = 0.
The first item of the claim follows.

To prove the second, write similarly

G =
k∑

j=1,j ̸=i

aj−1 · Fj + ai−1 ·R (mod Z)

Let x ∈ F be such that Z(x) = 0 but R(x) ̸= 0. Then G mod Z = 0 implies G(x) = 0,
which means a is a root of the non-zero polynomial

g(Y ) :=

k∑
j=1,j ̸=i

Y j−1 · Fj(x) + Y i−1 ·R(x),

which is the case for at most k values of a.

Proof. (Of Lemma 4.5) Let P be the S-ranged (d,D, t, ℓ)-polynomial protocol. We
construct the protocol P∗. The set of preprocessed polynomials in P∗ are the same as
in P with the addition of ZS(X) :=

∏
a∈S(X − a). P∗ proceeds exactly as P until the

point where Vpoly asks about identities on S. Suppose that the k identities the verifier
asks about are F1(X), . . . , Fk(X) (where each Fi is of total degree at most D and of the
form described in Definition 4.1). P∗ now proceeds as follows:

� Vpoly sends uniform a1, . . . , ak ∈ F to Ppoly.

� Ppoly computes the polynomial T :=
∑

i∈[k] ai·Fi

ZS
.

� Ppoly sends T to I.

� Vpoly queries the identity ∑
i∈[k]

ai · Fi(X) ≡ T · ZS

It follows from Claim 4.6 that e.w.p. 1/|F| over Vpoly’s choice of a1, . . . , ak, the
existence of an appropriate T ∈ F[X] is equivalent to F1, . . . , Fk vanishing on S. This in
turn is equivalent to Vpoly outputting acc in the analogous execution of P.
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4.2 From polynomial protocols to protocols against algebraic adversaries

We wish to use the polynomial commitment scheme of Section 3 to compile a polynomial
protocol into one with knowledge soundness in the algebraic group model (in the sense
defined in Section 2.2).

For the purpose of capturing the efficiency of the transformation, we first define
somewhat technical measures of the (d,D, t, ℓ)-polynomial protocol P.

For i ∈ [t], let di be the maximal degree of fi sent by an honest prover in P. Assume
only one identity G(X,h1(v1(X)), . . . , hM (vM (X))) ≡ 0 is checked by Vpoly in P.

For i ∈ [M ], let d′i be the “matching” dj . That is d
′
i = dj if hi = fj , and d′i = deg(gj)

if hi = gj .
Let t∗ = t∗(P) be the number of distinct polynomials amongst v1, . . . , vM . Let

S1 ∪ . . . ∪ St∗ = [M ] be a partition of [M ] according to the distinct values. For j ∈ [t∗],
let ej := max {d′i}i∈Sj

Finally, define e(P) :=
∑

i∈[t](di + 1) +
∑

j∈[t∗] ej .

Lemma 4.7. Let P be a public coin (d,D, t, ℓ)-polynomial protocol for a relation R
where only one identity is checked by Vpoly. Then we can construct a protocol P∗ for R
with knowledge soundness in the Algebraic Group Model under 2d-DLOG such that

1. The prover P in P∗ requires e(P) G1-exponentiations.

2. The total prover communication consists of t + t∗(P) G1 elements and M F-
elements.

3. The verifier V requires t+ t∗(P) G1-exponentiations, two pairings and one eval-
uation of G.

Proof. Let S = (gen, com, open) be the d-polynomial commitment scheme described in
Lemma 3.3. The SRS of P∗ includes srs = gen(d), with the addition of {com(g1), . . . , com(gℓ)}.

Given P we describe P∗. P and V behave identically to Ppoly and Vpoly, except in
the following two cases.

� Whenever Ppoly sends a polynomial fi ∈ F<d[X] to I in P, P sends cmi = com(fi)
to V.

� Let v∗1, . . . , v
∗
t∗ be the distinct polynomials amongst v1, . . . , vM . When Vpoly asks

about the identity

F (X) := G(X,h1(v1(X)), . . . , hM (vM (X))) ≡ 0,

1. V chooses random x ∈ F, computes v∗1(x), . . . , v
∗
t∗(x), and sends x to P.

2. P replies with {si}i∈[M ], which are the alleged values h1(v1(x)), . . . , hM (vM (x)).

3. V engages in the protocol open with P to verify the correctness of {si}
4. V outputs acc if and only if

G(x, s1, . . . , sM ) = 0.
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The efficiency claims about P∗ follow directly from Lemma 3.3.
To prove the claim about knowledge soundness in the AGM we must describe the

extractor E for the protocol P∗. For this purpose, let EP be the extractor of the
protocol P as guaranteed to exist from Definition 4.3, and ES be the extractor for the
Knowledge Soundness game of S as in Definition 3.1.

Now assume an algebraic adversary A is taking the role of P in P∗.

1. E sends the commitments cm1, . . . , cmt to ES and receives in return f1, . . . , ft ∈
F<d[X].

2. E plays the role of I in interaction with EP , sending him the polynomials f1, . . . , ft.

3. When EP outputs ω, E also outputs ω.

Now let us define two events (over the randomness of V,A and gen):

1. We think of an adversary AP participating in P, and using the polynomials
f1, . . . , ft as their messages to I. We define A to be the event that the identity F
held, but (x, ω) /∈ R. By the KS of P, Pr(A) = negl(λ).

2. We let B be the event that for some i ∈ [M ], hi(vi(x)) ̸= si, and at the same time
VPC has output acc when open was run as a subroutine in Step 3. By the KS of
S , Pr(B) = negl(λ).

Now look at the event C thatV outputs acc, but E failed in the sense that (x, ω) /∈ R.
We split C into two events.

1. A or B also happened - this has negl(λ) probability.

2. C happened but not A or B. This means F is not the zero polynomial, but
F (x) = 0; which happens w.p. negl(λ).

Reducing the number of field elements We describe an optimization by Mary Maller, to
reduce the number of F-elements in the proof from M . We begin with an illustrating
example. Suppose V wishes to check the identity h1(X) · h2(X) − h3(X) ≡ 0. The
compilation described above would have P send the values of h1, h2, h3 at a random
x ∈ F; and V would check if h1(x)h2(x)−h3(x) = 0. Thus, P sends three field elements.

Note however, that we could instead have P send only c := h1(x), and then simply
verify in the open protocol whether the polynomial L(X) := c · h2(X)− h3(X) is equal
to zero at x. (Note that we can compute com(L) = c · com(h2)− com(h3).) We refer to
L later as the linearisation polynomial.

To describe the general method, we must define another technical measure of a
polynomial protocol. We assume again (mainly for simplicity) that Vpoly checks only
one identity F . Now define r(P) to be the minimal size of a subset S ⊂ [M ] such that

18



� ([M ] \ S) ⊂ Si for one of the subsets Si of the partition described before Lemma
4.7.

� The polynomial G such that

F (X) := G(X,h1(v1(X)), . . . , hM (vM (X)))

has degree zero or one as a polynomial in the variables {Xj}j∈[M ]\S whose coeffi-

cients are polynomials in X and {Xj}j∈S .

Assume P is such that r := r(P) < M . We claim that the reduction of Lemma 4.7 can
be changed so that only r F-elements are sent by P.

1. P now sends only {si = hi(vi(x))}i∈S .

2. Now let L be the restriction G|X=x;Xi=si,i∈S . V and P use {com(fi)}i∈S , and the
linearity of com, to compute the commitment to the corresponding restriction FL

of F .

3. Now P and V engage in the protocol open to verify the correctness of the evalua-
tions {si}i∈S , and additionally to verify FL(x) = 0.

5 Polynomial protocols for identifying permutations

At the heart of our universal SNARK is a “permutation check” inspired by the per-
mutation argument originally presented by Bayer and Groth [BG12] and its variants
in [BCC+16, MBKM]. Again, our main advantage over [MBKM] is getting a simpler
protocol by working with univariate polynomials and multiplicative subgroups.

Degree bounds: We use two integer parameters n ≤ d. Intuitively, n is the degree of the
honest prover’s polynomials, and d is the bound we actually enforce on malicious provers.
Accordingly, we assume degree bound n while analyzing prover efficiency and describing
“official” protocol inputs; but allow degree bound d while analyzing soundness.

We assume the existence of a multiplicative subgroupH ⊂ F of order n with generator
g.

For i ∈ [n], we denote by Li(X) the element of F<n[X] with Li(g
i) = 1 and Li(a) = 0

for a ∈ H different from gi, i.e. {Li}i∈[n] is a Lagrange basis for H.
One thing to note is that the {Li} can “reduce point checks to range checks”. More

precisely, the following claim follows directly from the definition of {Li}.

Claim 5.1. Fix i ∈ [n], and Z,Z∗ ∈ F[X]. Then Li(a)(Z(a) − Z∗(a)) = 0 for each
a ∈ H if and only if Z(gi) = Z∗(gi).

For f, g ∈ F<d[X] and a permutation σ : [n] → [n], we write g = σ(f) if for each
i ∈ [n], g(gi) = f(gσ(i)).8

8Note that according to this definition there are multiple g with g = σ(f). Intuitively, we think of
σ(f) as the unique such g ∈ F<n[X], but do not define this formally to avoid needing to enforce this
degree bound for efficiency reasons.
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We present a ranged polynomial protocol enabling Ppoly to prove that g = σ(f).

Preprocessed polynomials: The polynomial SID ∈ F<n[X] defined by SID(g
i) = i for each

i ∈ [n] and Sσ ∈ F<n[X] defined by Sσ(g
i) = σ(i) for each i ∈ [n].

Inputs: f, g ∈ F<n[X]

Protocol:

1. Vpoly chooses random β, γ ∈ F and sends them to Ppoly.

2. Let f ′ := f + β · SID + γ, g′ := g + β · Sσ + γ. That is, for i ∈ [n]

f ′(gi) = f(gi) + β · i+ γ, g′(gi) = g(gi) + β · σ(i) + γ

3. Ppoly computes Z ∈ F<n[X], such that Z(g) = 1; and for i ∈ {2, . . . , n}

Z(gi) =
∏

1≤j<i

f ′(gj)/g′(gj).

(If one of the product elements is undefined, which happens w.p. negl(λ) over γ,
the protocol is aborted9.)

4. Ppoly sends Z to I.

5. Vpoly checks if for all a ∈ H

(a) L1(a)(Z(a)− 1) = 0.

(b) Z(a)f ′(a) = g′(a)Z(a · g).

and outputs acc iff all checks hold.

Lemma 5.2. Fix f, g ∈ F<d[X]. For any strategy of Ppoly, the probability of Vpoly

outputting acc in the above protocol when g ̸= σ(f) is negl(λ).

Proof. Suppose that g ̸= σ(f). By claim A.1, e.w.p negl(λ) over the choice of β, γ ∈ F,

a :=
∏
i∈[n]

f ′(gi) ̸= b :=
∏
i∈[n]

g′(gi).

Assume β, γ were chosen such that the above holds, and also such that g′(gi) ̸= 0 for all
i ∈ [n]. We show Vpoly rejects; specifically, that assuming both identities Vpoly checks
hold leads to contradiction.

9This abort ruins the perfect completeness of the protocol. If one wishes to preserve perfect com-
pleteness, the protocol can be altered such that if for some i, g′(gi) = 0, Ppoly proves this to Vpoly, and
Vpoly accepts in this case. This adds a negl(λ) factor to the soundness error.
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From the first check we know that Z(g) = 1. From the second check we can show
inductively, that for each i ∈ [n]

Z(gi+1) =
∏

1≤j≤i

f ′(gj)

g′(gj)
.

In particular, Z(gn+1) = a/b.
As gn+1 = g,

1 = Z(g) = Z(gn+1) = a/b ̸= 1,

which is a contradiction.

5.1 Checking “extended” permutations

In our protocol, we in fact need to check a permutation “across” the values of several
polynomials. Let us define this setting formally. Suppose we now have mutliple poly-
nomials f1, . . . , fk ∈ F<d[X] and a permutation σ : [kn] → [kn]. For (g1, . . . , gk) ∈
(F<d[X])k, we say that (g1, . . . , gk) = σ(f1, . . . , fk) if the following holds.

Define the sequences (f(1), . . . , f(kn)), (g(1), . . . , g(kn)) ∈ Fkn by

f((j−1)·n+i) := fj(g
i), g((j−1)·n+i) := gj(g

i),

for each j ∈ [k], i ∈ [n]. Then we have g(ℓ) = f(σ(ℓ)) for each ℓ ∈ [kn].

Preprocessed polynomials: The polynomials SID1, . . . ,SIDk ∈ F<n[X] defined by SIDj(g
i) =

(j − 1) · n+ i for each i ∈ [n].
In fact, only SID = SID1 is actually included in the set of preprocessed polynomials,

as SIDj(x) can be computed as SIDj(x) = SID(x) + (j − 1) · n.
For each j ∈ [k], Sσj ∈ F<n[X], defined by Sσj(g

i) = σ((j−1) ·n+ i) for each i ∈ [n].

Inputs: f1, . . . , fk, g1, . . . , gk ∈ F<n[X]

Protocol:

1. Vpoly chooses random β, γ ∈ F and sends them to Ppoly.

2. Let f ′
j := fj + β · SIDj + γ, and g′j := gj + β · Sσj + γ. That is, for j ∈ [k], i ∈ [n]

f ′
j(g

i) = fj(g
i) + β((j − 1) · n+ i) + γ, g′j(g

i) = gj(g
i) + β · σ((j − 1) · n+ i) + γ

3. Define f ′, g′ ∈ F<kn[X] by

f ′(X) :=
∏
j∈[k]

f ′
j(X), g′(X) :=

∏
j∈[k]

g′j(X).
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4. Ppoly computes Z ∈ F<n[X], such that Z(g) = 1; and for i ∈ {2, . . . , n}

Z(gi) =
∏

1≤j<i

f ′(gj)/g′(gj).

(The case of one of the products being undefined is handled as in the previous
protocol.)

5. Ppoly sends Z to I.

6. Vpoly checks if for all a ∈ H

(a) L1(a)(Z(a)− 1) = 0.

(b) Z(a)f ′(a) = g′(a)Z(a · g).

and outputs acc iff all checks hold.

Lemma 5.3. Fix any f1, . . . , fk, g1, . . . gk ∈ F<d[X] and permutation σ on [kn] as inputs
to the above protocol Pk. Suppose that (g1, . . . , gk) ̸= σ(f1, . . . , fk). Then, for any
strategy of Ppoly, the probability of Vpoly outputting acc is negl(λ).

Proof. (g1, . . . , gk) ̸= σ(f1, . . . , fk) implies that with high probability over β, γ ∈ F the

product F of the values
{
f ′
j(g

i)
}
j∈[k],i∈[n]

is different from the product G of the values{
g′j(g

i)
}
j∈[k],i∈[n]

. Note now that

F =
∏
i∈[n]

f ′(gi), G =
∏
i∈[n]

g′(gi),

and that the next steps of the protocol are identical to those in the previous protocol,
and as analyzed there - exactly check if these products are equal.

5.2 Checking “extended copy constraints” using a permutation

We finally come to the actual primitive that will be used in our main protocol. Let
T = {T1, . . . , Ts} be a partition of [kn] into disjoint blocks. Fix f1, . . . , fk ∈ F<n[X].
We say that f1, . . . , fk copy-satisfy T if, when defining (f(1), . . . , f(kn)) ∈ Fkn as above,
we have f(ℓ) = f(ℓ′) whenever ℓ, ℓ

′ belong to the same block of T .
We claim that the above protocol for extended permutations can be directly used for

checking whether f1, . . . , fk satisfy T : Define a permutation σ(T ) on [kn] such that for
each block Ti of T , σ(T ) contains a cycle going over all elements of Ti. Then, (f1, . . . , fk)
copy-satisfy T if and only if (f1, . . . , fk) = σ(f1, . . . , fk).
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6 Constraint systems

Fix positive integers m and n. We present a type of constraint system that captures
fan-in two arithmetic circuits of unlimited fan-out with n gates and m wires, but is more
general.

The constraint system C = (V,Q) is defined as follows.

� V is of the form V = (a,b, c), where a,b, c ∈ [m]n. We think of a,b, c as the left,
right and output sequence of C respectively.

� Q = (qL,qR,qO,qM,qC) ∈ (Fn)5 where we think of qL,qR,qO,qM,qC ∈ Fn as
“selector vectors”.

We say x ∈ Fm satisfies C if for each i ∈ [n],

(qL)i · xai + (qR)i · xbi
+ (qO)i · xci + (qM)i · (xaixbi

) + (qC)i = 0.

To define a relation based on C , we extend it to include a positive integer ℓ ≤ m, and
subset I ⊂ [m] of “public inputs”. Assume without loss of generality that I = {1, . . . , ℓ}.

Now we can define the relation RC as the set of pairs (x, ω) with x ∈ Fℓ, ω ∈ Fm−ℓ

such that x := (x, ω) satisfies C .
We proceed to show some useful instantiations of this type of constraints.

Arithmetic circuits: A fan-in 2 circuit of n gates, each being either an addition or mul-
tiplication gate, can be captured in such a constraint system as follows.

1. m is set to be the number of wires, and each wire is associated with an index
i ∈ [m].

For each i ∈ [n],

2. Set ai,bi, ci to be the index of left/right/output wire of the i’th gate respectively.

3. Set (qL)i = 0, (qR)i = 0, (qM)i = 1, (qO)i = −1 when the i’th gate is a multipli-
cation gate.

4. Set (qL)i = 1, (qR)i = 1, (qM)i = 0, (qO)i = −1 when the i’th gate is an addition
gate. (Note that we can get “linear combination gates” by using other non-zero
values for (qL)i, (qR)i.)

5. Always set (qC)i = 0.

Booleanity constraints: A common occurrence in proof systems is the need to enforce
xj ∈ {0, 1} for some j ∈ [m]. This is equivalent in our system to setting, for some i ∈ [n],

ai = bi = j, (qL)i = −1, (qM)i = 1, (qR)i = (qO)i = (qC)i = 0.
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Enforcing constants: It is quite convenient and direct to set constant values: Fix any
j ∈ [m], a ∈ F. To enforce the constraint xj = a we set for some i ∈ [n]

ai = j, (qL)i = 1, (qM)i = (qR)i = (qO)i = 0, (qC)i = −a.

7 Main protocol

Let C = (V,Q) be a constraint system of the form described in Section 6. We present
our main protocol for the relation RC . It will be convenient to first define the following
notion of the partition of C , denoted TC , as follows.

Suppose V = (a,b, c); think of V as a vector V in [m]3n. For i ∈ [m], let Ti ⊂ [3n]
be the set of indices j ∈ [3n] such that Vj = i. Now define

TC := {Ti}i∈[m] .

We make a final definition before presenting the protocol. We say C is prepared for
ℓ public inputs if for i ∈ [ℓ]

ai = i, (qL)i = 1, (qM)i = (qR)i = (qO)i = 0, (qC)i = 0.

Recall that H = {g, . . . ,gn}. We present an H-ranged polynomial protocol for RC .

Preprocessing: Let σ = σ(TC ).
The polynomials SID1,SID2, SID3, Sσ1, Sσ2,Sσ3 ∈ F<n[X] as defined in the protocol of

subsection 5.1 .
Overloading notation, the polynomials qL,qR,qO,qM,qC ∈ F<n[X] defined for each

i ∈ [n] by

qL(g
i) := (qL)i,qR(g

i) := (qR)i,qO(gi) := (qO)i,qM(gi) := (qM)i,qC(g
i) := (qC)i

Protocol:

1. Let x ∈ Fm be Ppoly’s assignment consistent with the public input x. Ppoly computes
the three polynomials fL, fR, fO ∈ F<n[X], where for i ∈ [n]

fL(g
i) = xai , fR(g

i) = xbi
, fO(g

i) = xci .

Ppoly sends fL, fR, fO to I.

2. Ppoly and Vpoly run the extended permutation check protocol using the permutation
σ between (fL, fR, fO) and itself. As explained in Section 5.2, this exactly checks
whether (fL, fR, fO) copy-satisfies TC .

3. Vpoly computes the “Public input polynomial”

PI(X) :=
∑
i∈[ℓ]

−xi · Li(X)
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4. Vpoly now checks the identity

qL · fL + qR · fR + qO · fO + qM · fL · fR + (qC + PI) = 0,

on H.

Theorem 7.1. The above protocol is an H-ranged polynomial protocol for the relation
RC .

Proof. Our main task is to describe and prove correctness of an extractor E. E simply
uses the values of fL, fR, fO to construct an assignment in the natural way - e.g. if ai = j
for some i ∈ [n], let xj = fL(g

i). Finally, E defines and outputs ω := (xℓ+1, . . . ,xm).
Now, let us look at the event C where (x, ω) /∈ R but Vpoly outputs acc. We split C into
the two subevents, where (fL, fR, fO) doesn’t copy-satisfy σ(C ), and where it does. The
first subevent has probability negl(λ) according to the correctness of Lemma 5.3 and its
use for copy-satisfiability checks as explained in Section 5.2.

On the other hand, if (fL, fR, fO) copy-satisfies σ(C ) and the identity checked by
Vpoly holds, it must be the case that (x, ω) ∈ RC .

Now, using Lemma 4.5 and Lemma 4.7 we get

Corollary 7.2. Let C be a constraint system of the form described in Section 6 with
parameter n. There is a protocol for the relation RC with Knowledge Soundness in the
Algebraic Group Model such that

1. The prover P requires 11n+ 1 G1-exponentiations.

2. The total prover communication consists of 7 G1-elements and 7 F-elements.10

Proof. We bound the quantities e(P), t∗(P), r(P) from Section 4.2; where P is the
polynomial protocol derived from the protocol of Theorem 7.1 using Lemma 4.5. The
result then follows from Lemma 4.7 and the discussion after. (For extra clarity, a full
self-contained description of the final protocol is given in Section 8.)

We commit to polynomials fL, fR, fO, Z ∈ F<n[X] and a polynomial T ∈ F<3n[X]
resulting from division by ZH . This requires 7n G1-exponentiations. Then, we need to
open at random x ∈ F: fL(x), fR(x), fO(x), SID(x),Sσ1(x), Sσ2(x)

and at x · g: Z(x · g).
Note that fixing these 7 values, together with the value ZH(x) which the verifier can

compute himself in log(n) operations, our identity becomes a linear polynomial L which
is a linear combination of qL,qR,qO,qM,qC, Z,Sσ3, T . This implies r(P) ≤ 7.

It follows that

� e(P) = 11n + 1 - as we add to the 7n cost of commitments, the maximal degree
among the polynomial evaluated at x which is 3n plus the maximum degree among
polynomials evaluated at x/g which is n+ 1.

10The result stated in introduction with 6 F-elements uses an additional optimization suggested by
Vitalik Buterin explained in Section 8.
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� t∗(P) = 2 - as we have two distinct evaluation points.

� r(P) ≤ 7.

8 The final protocol, rolled out

For the reader’s convenience we present the full final protocol. A few preliminary notes:

� Adding zero-knowledge was not explicitly discussed so far, but is implemented here.
All that is needed is adding random multiples of ZH to the prover polynomials,
and requiring the verifier to send challenges in F \H. This does not ruin satisfia-
bility, and creates a situation where all values are either11 completely uniform or
determined by verifier equations.

� We explicitly define the multiplicative subgroup H as containing the n’th roots of
unity in F, where ω is a primitive n’th root of unity and a generator of H. i.e:
H = {1, ω, . . . , ωn−1}. We assume that the number of gates in a circuit is no more
than n.

� We include an optimisation suggested by Vitalik Buterin - representing the identity
permutation via degree-1 polynomials, so that their evaluations can be directly
computed by the verifier. This reduces the size of the proof by one field element,
as well as reducing the number of Fast-Fourier-Transforms required by the prover.
The representation is described in the next subsection.

� We use H to refer to an efficiently computable hash function, H : {0, 1}∗ → F, that
takes arbitrary length inputs and returns elements of F. We use H to obtain a non-
interactive version of our protocol via the Fiat-Shamir transformation. Thus, H
should be modelled as a random oracle for a security proof of this non-interactive
variant.

8.1 Polynomials that define a specific circuit

The following polynomials, along with integer n, uniquely define our circuit:

� qM(X), qL(X), qR(X), qO(X), qC(X), the ‘selector’ polynomials that define the cir-
cuit’s arithmetisation

� SID1(X) = X,SID2(X) = k1X,SID3(X) = k2X: the identity permutation applied
to a,b, c. k1, k2 ∈ F are chosen such that H, k1·H, k2·H are distinct cosets of H in
F∗, and thus consist of 3n distinct elements. (For example, when ω is a quadratic

11A small exception noted to us by Sean Bowe, is that the prover aborts caused by denominators being
zero in the computation of Z in Section 5 leak information about the witnesses. For this reason a formal
analysis would attain statistical rather than perfect zero-knowledge.
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residue in F, take k1 to be any quadratic non-residue, and k2 to be a quadratic
non-residue not contained in k1 ·H.)

� Let us denote H ′ := H ∪ (k1 ·H)∪ (k2 ·H). Let σ : [3n] → [3n] be a permutation.
Now, identify [3n] with H ′ via i → ωi, n + i → k1 · ωi, 2n + i → k2 · ωi. Finally,
define σ∗ below to denote the mapping from [3n] to H ′ derived from applying σ
and then this injective mapping into H ′. We encode σ∗ by the three permutation
polynomials

Sσ1(X) :=
n∑

i=1

σ∗(i)Li(X), Sσ2(X) :=
n∑

i=1

σ∗(n+i)Li(X),Sσ3(X) :=
n∑

i=1

σ∗(2n+i)Li(X).

8.2 The SNARK proof relation

Given ℓ ≤ n and fixed values for the above polynomials, we wish to prove statements of
knowledge for the relationR ⊂ Fℓ×F3n−ℓ containing all pairs x = (wi)i∈[ℓ], w = (wi)

3n
i=ℓ+1

such that

1. For all i ∈ [n]:

qMiwiwn+i + qLiwi + qRiwn+i + qOiw2n+i + qCi = 0,

(where we used above the shorthand qi = q(ωi)).

2. For all i ∈ [3n]:
wi = wσ(i).

8.3 The protocol

We describe the protocol below as a non-interactive protocol using the Fiat-Shamir
heuristic. For this purpose we always denote by transcript the concatenation of the
common preprocessed input, and public input, and the proof elements written by the
prover up to a certain point in time. We use transcript for obtaining random challenges via
Fiat-Shamir. One can alternatively, replace all points where we write below “compute
challenges”, by the verifier sending random field elements, to obtain the interactive
protocol from which we derive the non-interactive one.

Common preprocessed input:

n, (x · [1]1, . . . , xn+5 · [1]1), (qMi, qLi, qRi, qOi, qCi)
n
i=1, σ

∗,
qM(X) =

∑n
i=1 qMiLi(X),

qL(X) =
∑n

i=1 qLiLi(X),
qR(X) =

∑n
i=1 qRiLi(X),

qO(X) =
∑n

i=1 qOiLi(X),
qC(X) =

∑n
i=1 qCiLi(X),

Sσ1(X) =
∑n

i=1 σ
∗(i)Li(X),

Sσ2(X) =
∑n

i=1 σ
∗(n+ i)Li(X),

Sσ3(X) =
∑n

i=1 σ
∗(2n+ i)Li(X)
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Public input: ℓ, (wi)i∈[ℓ]

Prover algorithm:

Prover input: (wi)i∈[3n]

Round 1:
Generate random blinding scalars (b1, . . . , b9) ∈ F
Compute wire polynomials a(X), b(X), c(X) :

a(X) = (b1X + b2)ZH(X) +

n∑
i=1

wiLi(X)

b(X) = (b3X + b4)ZH(X) +

n∑
i=1

wn+iLi(X)

c(X) = (b5X + b6)ZH(X) +

n∑
i=1

w2n+iLi(X)

Compute [a]1 := [a(x)]1 , [b]1 := [b(x)]1 , [c]1 := [c(x)]1

First output of P is ([a]1, [b]1, [c]1).

Round 2:
Compute permutation challenges (β, γ) ∈ F :

β = H(transcript, 0), γ = H(transcript, 1)

Compute permutation polynomial z(X) :

z(X) = (b7X
2 + b8X + b9)ZH(X)

+L1(X) +
∑n−1

i=1

(
Li+1(X)

∏i
j=1

(wj+βωj+γ)(wn+j+βk1ωj+γ)(w2n+j+βk2ωj+γ)
(wj+σ∗(j)β+γ)(wn+j+σ∗(n+j)β+γ)(w2n+j+σ∗(2n+j)β+γ)

)
Compute [z]1 := [z(x)]1

Second output of P is ([z]1)
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Round 3:
Compute quotient challenge α ∈ F :

α = H(transcript)

Compute quotient polynomial t(X) :

t(X) =
(a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X)) 1

ZH(X)

+((a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z(X)) α
ZH(X)

− ((a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(Xω)) α
ZH(X)

+(z(X)− 1) L1(X) α2

ZH(X)

Split t(X) into degree < n polynomials t′lo(X), t′mid(X) and t′hi(X) of degree at most
n+ 5, such that

t(X) = t′lo(X) +Xnt′mid(X) +X2nt′hi(X)

Now choose random scalars b10, b11 ∈ F and define

tlo(X) := t′lo(X) + b10X
n, tmid(X) := t′mid(X)− b10 + b11X

n, thi(X) := t′hi(X)− b11

Note that we have t(X) = tlo(X) +Xntmid(X) +X2nthi(X).
Compute [tlo]1 := [tlo(x)]1 , [tmid]1 := [tmid(x)]1 , [thi]1 := [thi(x)]1

Third output of P is ([tlo]1, [tmid]1, [thi]1)

Round 4:
Compute evaluation challenge z ∈ F :

z = H(transcript)

Compute opening evaluations:

ā = a(z), b̄ = b(z), c̄ = c(z), s̄σ1 = Sσ1(z), s̄σ2 = Sσ2(z),
z̄ω = z(zω)

Fourth output of P is (ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω)
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Round 5:
Compute opening challenge v ∈ F :

v = H(transcript)

Compute linearisation polynomial r(X) :

r(X) =[
āb̄ · qM(X) + ā · qL(X) + b̄ · qR(X) + c̄ · qO(X) + PI(z) + qC(X)

]
+α[(ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ) · z(X)
−(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+ β · Sσ3(X) + γ)z̄ω]
+α2 [(z(X)− 1)L1(z)]
−ZH(z) · (tlo(X) + zntmid(X) + z2nthi(X))

Compute opening proof polynomial Wz(X) :

Wz(X) =
1

X − z



r(X)
+v(a(X)− ā)
+v2(b(X)− b̄)
+v3(c(X)− c̄)
+v4(Sσ1(X)− s̄σ1)
+v5(Sσ2(X)− s̄σ2)


Compute opening proof polynomial Wzω(X) :

Wzω(X) =
(z(X)− z̄ω)

X − zω

Compute [Wz]1 := [Wz(x)]1 , [Wzω]1 := [Wzω(x)]1

The fifth output of P is ([Wz]1, [Wzω]1)

Return

πSNARK =

(
[a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [Wz]1, [Wzω]1,

ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω

)
Compute multipoint evaluation challenge u ∈ F :

u = H(transcript)

We now describe the verifier algorithm in a way that minimizes the number of G1

scalar multiplications.

Verifier algorithm
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Verifier preprocessed input:

[qM]1 := qM(x) · [1]1, [qL]1 := qL(x) · [1]1, [qR]1 := qR(x) · [1]1, [qO]1 := qO(x) · [1]1,
[qC]1 := qC(x) · [1]1, [sσ1]1 := Sσ1(x) · [1]1, [sσ2]1 := Sσ2(x) · [1]1,
[sσ3]1 := Sσ3(x) · [1]1, x · [1]2

V((wi)i∈[ℓ], πSNARK):

1. Validate ([a]1, [b]1, [c]1, [z]1, [tlo]1, [tmid]1, [thi]1, [Wz]1, [Wzω]1) ∈ G9
1.

2. Validate (ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω) ∈ F6.

3. Validate (wi)i∈[ℓ] ∈ Fℓ.

4. Compute challenges β, γ, α, z, v, u ∈ F as in prover description, from the common
inputs, public input, and elements of πSNARK.

5. Compute zero polynomial evaluation ZH(z) = zn − 1.

6. Compute Lagrange polynomial evaluation L1(z) =
ω(zn−1)
n(z−ω) .

7. Compute public input polynomial evaluation PI(z) =
∑

i∈[ℓ]wiLi(z).

8. To save a verifier scalar multiplication, we split r into its constant and non-constant
terms. Compute r’s constant term:

r0 := PI(z)− L1(z)α
2 − α(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+ γ)z̄ω,

and let r′(X) := r(X)− r0.

9. Compute first part of batched polynomial commitment [D]1 := [r′]1 + u · [z]1:

[D]1 :=

āb̄ · [qM]1 + ā · [qL]1 + b̄ · [qR]1 + c̄ · [qO]1 + [qC]1
+
(
(ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ)α+ L1(z)α

2 + u
)
· [z]1

−(ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)αβz̄ω · [sσ3]1
−ZH(z)([tlo]1 + zn · [tmid]1 + z2n · [thi]1)

10. Compute full batched polynomial commitment [F ]1:

[F ]1 := [D]1 + v · [a]1 + v2 · [b]1 + v3 · [c]1 + v4 · [sσ1]1 + v5 · [sσ2]1

11. Compute group-encoded batch evaluation [E]1:

[E]1 :=

(
−r0 + vā+ v2b̄+ v3c̄
+v4s̄σ1 + v5s̄σ2 + uz̄ω

)
· [1]1

12. Batch validate all evaluations:

e([Wz]1 + u · [Wzω]1, [x]2)
?
= e(z · [Wz]1 + uzω · [Wzω]1 + [F ]1 − [E]1, [1]2)
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A Claims for permutation argument:

The following claim is crucial for the correctness of the protocols in Section 5.

Claim A.1. Fix any permutation σ of [n], and any a1, . . . , an, b1, . . . , bn ∈ F. If∏
i∈[n]

(ai + β · i+ γ) =
∏
i∈[n]

(bi + β · σ(i) + γ)

with probability larger than n/|F| over uniform β, γ ∈ F; then bi = aσ(i) for all i ∈ [n].

We present the following proof by Tohru Kohrita.

Proof. By Schwartz-Zippel and the assumption of the claim, the following equality of
polynomials holds in F[X,Y ].

n∏
i=1

(ai + iX + Y ) ≡
n∏

i=1

(bi + σ(i)X + Y ).

Recall that F[X,Y ] is a unique factorization domain where the invertible elements are
exactly F∗. Note also that the linear factors in the above products are irreducible. Thus,
there must be a one to one map M → M ′ between the factors of each side, such that
M = c ·M ′ for some c ∈ F∗. Moreover, since the coefficient of Y in all terms on both
sides is one, we must always have c = 1. Thus, this mapping must map a factor on the
LHS to one on the RHS with the same coefficient for X. In summary, we have for all
i ∈ [n],

aσ(i) + σ(i)X + Y ≡ bi + σ(i)X + Y.

Thus, we conclude that bi = aσ(i) for all i ∈ [n].
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