
Theysee mepolling
hatinThey

Theysee mepolling
hatinThey

1

WHO2

WHAT3

♥

WHERE

 
@3rd-Eden @3rdEden

4

WebSockets?WebSockets?

5

OMG, dude, polling is so 1995! Why no

WebSockets?WebSockets?
OMG, dude, polling is so 1995! Why no

WebSockets?WebSockets?
OMG, dude, polling is so 1995! Why no

WebSockets?WebSockets?
OMG, dude, polling is so 1995! Why no

WebSuckets!WebSuckets!

6

WebSockets?? Oh you mean

7

20+ 12+ 12.1+ 6+ 10+
RFC RFC RFC RFC RFC

Chrome for Android 18+

Firefox for Android 15+

Opera Mobile 12+

RFC

RFC

RFC

Browser supporting latest protocol

8

4+ 4+ 11+ 4.2+ 10+

Chrome for Android 18+

Firefox for Android 15+

Opera Mobile 12+

Browser supporting a protocol

⚠
Caution, feelings might get hurt

Trust me, I’m an engineer

9

⚠
Using or detecting HTTP proxies crashes
Safari < 5.1.4 and iOS Mobile WebKit

This causes full browser crashes or tab crashes. HTTP proxies cannot be
detected easily.

10

⚠

if (
 // Target safari browsers
 $.browser.safari

 // Not chrome
 && !$.browser.chrome

 // And correct WebKit version
 && parseFloat($.browser.version, 0) < 534.54
) {
 // Don’t use websockets
return;

}

11

⚠

12

⚠
W r i t i n g t o a c l o s e d W e b S o c k e t
connection can cause a crash

This happens on Mobile Safari when returning to the page after
backgrounding Safari or coming back from a different tab.

13

⚠
var ws = new WebSocket("wss://localhost:8080/");

ws.onmessage = function message(event) {
 // Wrap sends in a setTimeout out to allow the
 // readyState to be correctly set to closed
 setTimeout(function () {
 ws.send("Sup AmsterdamJS");
 });
};

14

⚠
var ws = new WebSocket("wss://localhost:8080/");

ws.onmessage = function message(event) {
 // Wrap sends in a setTimeout out to allow the
 // readyState to be correctly set to closed. But
 // Only have this delay on mobile devices
 if (mobile) return setTimeout(function () {
 ws.send("Sup AmsterdamJS");
 });

 ws.send("Sup AmsterdamJS");
};

15

⚠
3G, 4G, LTE mobile connections.. dafuq

It’s not just one mobile provider, it’s a lot of them. They are either running
reversed proxies or simply block WebSockets. Shame on you AT&T

16

⚠
var ua = navigator.userAgent.toLowerCase();

// Detect all possible mobile phones to filter out
// WebSockets
if (
 ~ua.indexOf('mobile')
 || ~ua.indexOf('android')
 || ~ua.indexOf('ios')
 || .. and more ..
) {
 // Don't use WebSockets
}

17

⚠
Pressing ESC in Firefox will close all
active network connections.

Not only during page load, but also after page load. The issue remains the
same. This is fixed in Firefox Nightly (20) all other version are affected.

18

⚠
$('body').keydown(function (e) {
 // make sure that you capture the `esc` key and
 // prevent it's default action from happening
 if (e.which === 27) e.preventDefault();
});

19

⚠
Be careful when sending UTF-8/16 to
Node.js

This can cause WebSocket connection drops as V8 uses UCS encoding
internally instead of modern UTF-16

20

⚠
var ws = new WebSocket("wss://localhost:8080/");

ws.onopen = function(event) {
 // encode and then unescape all messages that
 // contain utf 8 or user input.
 ws.send(unescape(encodeURIComponent()));
};

21

shitty emoji’s

⚠
Firefox cannot connect using ws:// from a
HTTPS secured server

It throws an “SecurityError: The operation is insecure.” error. Firefox 8+

22

⚠
Don’t use self signed certificates

Just don’t, some browsers give you no way of accepting them when using
WebSockets. And you look like a cheap d*ck for not buying a proper cert

23

It can’t be worse, right?!
Debugging browser compatibility is nothing compared to

debugging connection blocking

⚠🔒🔒🔒

24

 🚫🚫

Connection blockage

25

Enterprise proxy usually block everything
except ports: 80, 443, 843

Virus scanners on the other hand target port 80⚠🔒🔒🔒

26

27

 🚫🚫
Plugins

28

 🚫🚫
Plugins

Firewall

29

 🚫🚫
Plugins

Firewall

Anti-virus

30

31

These f*cks block JavaScript if it contains the word ActiveX

32

33

What are %
dealing with?

So.. What are %
dealing with?

26%

74%

Supported

Not supported

34

8%

92%

Successful connection

No connection

35

5%6%
3%

86%

No Proxy, Success

With Proxy, Failed

With Proxy, Success

No Proxy, Failed

36

0

25.00

50.00

75.00

100.00

Gecko Safari Firefox Chrome

WebSocket enabled

Success rate

37

80.00

85.00

90.00

95.00

100.00

Gecko Safari Firefox Chrome

Comet/Polling success

WebSocket success rate

38

70.00

75.00

80.00

85.00

90.00

443 with SSL 80 8080 443 no SSL

Success rate by port number

39

40

How can you
deal with it?

And.. How can you
deal with it?

41

⇆
Socket.IO

Socket.IO aims to make realtime apps possible in every browser and
mobile device, blurring the differences between the different transport
mechanisms. It's care-free real-time 100% in JavaScript.

42

488

Packages depend
on Socket.IO

7,701

Stars on Github &
1, 878 on the client.

488

Forks on Github &
363 on the client.

4418

Users on Google
Groups.

Big community

43

WebSocket
Supports old HIXIE drafts as well as the latest RFC specification.

FlashSocket
Fallback for browser that do not support WebSockets. A Flash file that emulates
the WebSocket protocol so you can still bi-directional communication.

HTML File
Basically it’s a streaming iframe wrapped with some ActiveX magic. Sending data
is done through XHR POST. Internet Explorer only, does not do cross domain.

XHR Polling
Long polling. Cross domain usage depends on the browser.

JSONP Polling
Injects small scripts in the page for fetching data and uses iframe’s and form posts
to send the data to the server.





📄

⇆



44

⇆ The --save tells npm to automatically add the installed version to your
package.json file. Additionally you can also install the socket.io-client
module if you want to connect to server from within node.js.

npm install socket.io --save

45

⇆

var io = require('socket.io').listen(8080);

io.sockets.on('connection', function (socket) {
 socket.on('another event', function (data) {
 // Client emitted a custom event
 socket.emit('custom event', data);
 });

 socket.on('disconnect', function () {
 // Socket disconnected
 });

 socket.send('hi there');

 // Automatic JSON encoding using a json flag
 socket.json.send({ foo: 'bar' });

 // Broadcast the message/event to every
 // connected user
 socket.broadcast.json.send({ foo: 'bar' });
});

46

⇆

var io = require('socket.io').listen(8080);

io.sockets.on('connection', function (socket) {
 socket.on('another event', function (data) {
 // Client emitted a custom event
 socket.emit('custom event', data);
 });

 socket.on('disconnect', function () {
 // Socket disconnected
 });

 socket.send('hi there');

 // Automatic JSON encoding using a json flag
 socket.json.send({ foo: 'bar' });

 // Broadcast the message/event to every
 // connected user
 socket.broadcast.json.send({ foo: 'bar' });
});

Creating: The listen method accepts either a HTTP
server instance or it will create one for you with
listens on the supplied port number

47

⇆

var io = require('socket.io').listen(8080);

io.sockets.on('connection', function (socket) {
 socket.on('another event', function (data) {
 // Client emitted a custom event
 socket.emit('custom event', data);
 });

 socket.on('disconnect', function () {
 // Socket disconnected
 });

 socket.send('hi there');

 // Automatic JSON encoding using a json flag
 socket.json.send({ foo: 'bar' });

 // Broadcast the message/event to every
 // connected user
 socket.broadcast.json.send({ foo: 'bar' });
});

Namespaces: the io.sockets points to the default
namespace of your socket.io server. One server can
have multiple namespaces or “endpoints”.

48

⇆

var io = require('socket.io').listen(8080);

io.sockets.on('connection', function (socket) {
 socket.on('another event', function (data) {
 // Client emitted a custom event
 socket.emit('custom event', data);
 });

 socket.on('disconnect', function () {
 // Socket disconnected
 });

 socket.send('hi there');

 // Automatic JSON encoding using a json flag
 socket.json.send({ foo: 'bar' });

 // Broadcast the message/event to every
 // connected user
 socket.broadcast.json.send({ foo: 'bar' });
});

Flags: the broadcast and json are instructions to
socket.io on how to send this message. But there are
more:

- json: Automatically JSON encoding
- broadcast: Send message to every connected user
 except your self.
- volatile: Send message, we don’t care if it get’s lost
 in the transaction.
- in(<room>): Send the message to everybody that is
 in this room.

49

⇆

// Connect to a custom domain
var socket = io.connect('http://domain.com');

socket.on('connect', function () {
 // Socket connected
socket.json.send({ foo: 'bar'});

});

socket.on('custom event', function (data) {
 // Server emitted a custom event
socket.emit('another event', data);

});

socket.on('disconnect', function () {
 // socket disconnected
});

socket.send('hi there');

http://domain.com
http://domain.com

50

⇆

// Connect to a custom domain
var socket = io.connect('http://domain.com');

socket.on('connect', function () {
 // Socket connected
socket.json.send({ foo: 'bar'});

});

socket.on('custom event', function (data) {
 // Server emitted a custom event
socket.emit('another event', data);

});

socket.on('disconnect', function () {
 // socket disconnected
});

socket.send('hi there');

Crossdomain: When you don’t supply it with a URL it
will connect to page that loads the socket.io code and
supply it with a custom domain to do cross domain
connections.

http://domain.com
http://domain.com

51

Engine.IO

Engine.io is the implementation of transport-based cross-browser/cross-
device bi-directional communication layer for Socket.IO. But it can also be
used as standalone server.

⇆

52

⇆

var engine = require('engine.io')
 , server = engine.listen(80)

server.on('connection', function (socket) {
 socket.on('message', function () {

// New message from the client
});

 socket.on('close', function () {
// Connection closed

});

 socket.send('utf 8 string');
});

53

⇆

var engine = require('engine.io')
 , server = engine.listen(80)

server.on('connection', function (socket) {
 socket.on('message', function () {

// New message from the client
});

 socket.on('close', function () {
// Connection closed

});

 socket.send('utf 8 string');
});

MIA: On the server side there are a couple of
differences, it misses a lot of “features” that were
build in. Like namespaces, rooms, automatic JSON
encoding etc. But in return you get a really low level
API

54

⇆
var socket = require('engine.io')('ws://localhost');

socket.onopen = function () {
 socket.onmessage = function (data) {
 // New message from the server
 };

 socket.onclose = function () {

// Connection closed
 };
};

Component: The Engine.IO client is now component
based. Component is a small JavaScript framework
that brings node style dependencies and requires to
the front-end.

MIA: Same as on the server side, it misses a lot of
features like no events, json encoding, namespaces,
authentication etc.

55





📄

⇆



WebSocket

FlashSocket

HTML File

XHR Polling

JSONP Polling

56





⇆



WebSocket

FlashSocket

XHR Polling

JSONP Polling

57

⇆
Socket.IO 1.0

Socket.io 1.0 will be build on top of Engine.io and will supply the missing
features that your used to in socket.io.

58

Key
takeaways

Key
takeaways

📱
Don’t use WebSockets on mobile

To much undetectable issues and polling works better for
network switching and crappy networks.

59

🔒
Always use SSL

It makes you less vulnerable for connection blocking.

60


Upgrade from fallbacks transports

So your real-time connection works in every environment

61


QUESTIONS?

62

Talk nerdy to me

