Fetch the repository succeeded.
{
"data": {
"question": {
"questionId": "1551",
"questionFrontendId": "1421",
"boundTopicId": null,
"title": "NPV Queries",
"titleSlug": "npv-queries",
"content": null,
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": true,
"difficulty": "Easy",
"likes": 54,
"dislikes": 292,
"isLiked": null,
"similarQuestions": "[]",
"exampleTestcases": "{\"headers\":{\"NPV\":[\"id\",\"year\",\"npv\"],\"Queries\":[\"id\",\"year\"]},\"rows\":{\"NPV\":[[1,2018,100],[7,2020,30],[13,2019,40],[1,2019,113],[2,2008,121],[3,2009,21],[11,2020,99],[7,2019,0]],\"Queries\":[[1,2019],[2,2008],[3,2009],[7,2018],[7,2019],[7,2020],[13,2019]]}}",
"categoryTitle": "Database",
"contributors": [],
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": null,
"stats": "{\"totalAccepted\": \"25K\", \"totalSubmission\": \"30.2K\", \"totalAcceptedRaw\": 24961, \"totalSubmissionRaw\": 30228, \"acRate\": \"82.6%\"}",
"hints": [],
"solution": {
"id": "2047",
"canSeeDetail": false,
"paidOnly": true,
"hasVideoSolution": false,
"paidOnlyVideo": true,
"__typename": "ArticleNode"
},
"status": null,
"sampleTestCase": "{\"headers\":{\"NPV\":[\"id\",\"year\",\"npv\"],\"Queries\":[\"id\",\"year\"]},\"rows\":{\"NPV\":[[1,2018,100],[7,2020,30],[13,2019,40],[1,2019,113],[2,2008,121],[3,2009,21],[11,2020,99],[7,2019,0]],\"Queries\":[[1,2019],[2,2008],[3,2009],[7,2018],[7,2019],[7,2020],[13,2019]]}}",
"metaData": "{\"mysql\": [\"Create Table If Not Exists NPV (id int, year int, npv int)\", \"Create Table If Not Exists Queries (id int, year int)\"], \"mssql\": [\"Create Table NPV (id int, year int, npv int)\", \"Create Table Queries (id int, year int)\"], \"oraclesql\": [\"Create Table NPV (id int, year int, npv int)\", \"Create Table Queries (id int, year int)\"], \"database\": true, \"name\": \"npv_queries\", \"pythondata\": [\"NPV = pd.DataFrame([], columns=['id', 'year', 'npv']).astype({'id':'Int64', 'year':'Int64', 'npv':'Int64'})\", \"Queries = pd.DataFrame([], columns=['id', 'year']).astype({'id':'Int64', 'year':'Int64'})\\n\"], \"postgresql\": [\"\\nCreate Table If Not Exists NPV (id int, year int, npv int)\\n\", \"Create Table If Not Exists Queries (id int, year int)\"], \"database_schema\": {\"NPV\": {\"id\": \"INT\", \"year\": \"INT\", \"npv\": \"INT\"}, \"Queries\": {\"id\": \"INT\", \"year\": \"INT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create Table If Not Exists NPV (id int, year int, npv int)",
"Create Table If Not Exists Queries (id int, year int)",
"Truncate table NPV",
"insert into NPV (id, year, npv) values ('1', '2018', '100')",
"insert into NPV (id, year, npv) values ('7', '2020', '30')",
"insert into NPV (id, year, npv) values ('13', '2019', '40')",
"insert into NPV (id, year, npv) values ('1', '2019', '113')",
"insert into NPV (id, year, npv) values ('2', '2008', '121')",
"insert into NPV (id, year, npv) values ('3', '2009', '21')",
"insert into NPV (id, year, npv) values ('11', '2020', '99')",
"insert into NPV (id, year, npv) values ('7', '2019', '0')",
"Truncate table Queries",
"insert into Queries (id, year) values ('1', '2019')",
"insert into Queries (id, year) values ('2', '2008')",
"insert into Queries (id, year) values ('3', '2009')",
"insert into Queries (id, year) values ('7', '2018')",
"insert into Queries (id, year) values ('7', '2019')",
"insert into Queries (id, year) values ('7', '2020')",
"insert into Queries (id, year) values ('13', '2019')"
],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": false,
"envInfo": "{\"mysql\": [\"MySQL\", \"<p><code>MySQL 8.0</code>.</p>\"], \"mssql\": [\"MS SQL Server\", \"<p><code>mssql server 2019</code>.</p>\"], \"oraclesql\": [\"Oracle\", \"<p><code>Oracle Sql 11.2</code>.</p>\"], \"pythondata\": [\"Pandas\", \"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0</p>\"], \"postgresql\": [\"PostgreSQL\", \"<p>PostgreSQL 16</p>\"]}",
"libraryUrl": null,
"adminUrl": null,
"challengeQuestion": null,
"__typename": "QuestionNode"
}
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。