|  | 
| 47 | 47 |     "import time\n", | 
| 48 | 48 |     "from tensorflow.keras.layers import LSTM\n", | 
| 49 | 49 |     "\n", | 
| 50 |  | -    "\n", | 
| 51 | 50 |     "# Window size or the sequence length\n", | 
| 52 | 51 |     "N_STEPS = 70\n", | 
| 53 | 52 |     "# Lookup step, 1 is the next day\n", | 
|  | 
| 82 | 81 |     "BATCH_SIZE = 64\n", | 
| 83 | 82 |     "EPOCHS = 400\n", | 
| 84 | 83 |     "\n", | 
| 85 |  | -    "# Apple stock market\n", | 
| 86 |  | -    "ticker = \"AAPL\"\n", | 
|  | 84 | +    "# Tesla stock market\n", | 
|  | 85 | +    "ticker = \"TSLA\"\n", | 
| 87 | 86 |     "ticker_data_filename = os.path.join(\"data\", f\"{ticker}_{date_now}.csv\")\n", | 
| 88 | 87 |     "# model name to save, making it as unique as possible based on parameters\n", | 
| 89 | 88 |     "model_name = f\"{date_now}_{ticker}-{LOSS}-{OPTIMIZER}-{CELL.__name__}-seq-{N_STEPS}-step-{LOOKUP_STEP}-layers-{N_LAYERS}-units-{UNITS}\"\n", | 
|  | 
| 1116 | 1115 |     "# evaluate the model\n", | 
| 1117 | 1116 |     "mse, mae = model.evaluate(data[\"X_test\"], data[\"y_test\"], verbose=0)\n", | 
| 1118 | 1117 |     "# calculate the mean absolute error (inverse scaling)\n", | 
| 1119 |  | -    "mean_absolute_error = data[\"column_scaler\"][\"adjclose\"].inverse_transform(mae.reshape(1, -1))[0][0]\n", | 
|  | 1118 | +    "mean_absolute_error = data[\"column_scaler\"][\"adjclose\"].inverse_transform([[mae]])[0][0]\n", | 
| 1120 | 1119 |     "print(\"Mean Absolute Error:\", mean_absolute_error)\n", | 
| 1121 | 1120 |     "# predict the future price\n", | 
| 1122 | 1121 |     "future_price = predict(model, data)\n", | 
|  | 
0 commit comments