Skip to content

Commit ff66ae5

Browse files
committed
keep coding
1 parent d54297d commit ff66ae5

File tree

1 file changed

+46
-34
lines changed

1 file changed

+46
-34
lines changed

SLAM/GraphBasedSLAM/graph_based_slam.py

Lines changed: 46 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -20,15 +20,14 @@
2020
DT = 0.1 # time tick [s]
2121
SIM_TIME = 50.0 # simulation time [s]
2222
MAX_RANGE = 20.0 # maximum observation range
23-
M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.
2423
STATE_SIZE = 3 # State size [x,y,yaw]
25-
LM_SIZE = 2 # LM srate size [x,y]
2624

25+
# Covariance parameter of Graph Based SLAM
2726
C_SIGMA1 = 1.0
2827
C_SIGMA2 = 0.1
2928
C_SIGMA3 = 0.1
3029

31-
MAX_ITR = 20
30+
MAX_ITR = 20 # Maximuma iteration
3231

3332
show_animation = True
3433

@@ -66,41 +65,52 @@ def calc_rotational_matrix(angle):
6665
return Rt
6766

6867

68+
def calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
69+
anglet, phit, dtd, angletd, phitd, t, td):
70+
edge = Edge()
71+
72+
tangle1 = pi_2_pi(yawt + anglet)
73+
tangle2 = pi_2_pi(yawt + anglet)
74+
t1 = dt * math.cos(tangle1)
75+
t2 = dtd * math.cos(tangle2)
76+
t3 = dt * math.sin(tangle1)
77+
t4 = dtd * math.sin(tangle2)
78+
79+
edge.e[0, 0] = xtd - xt - t1 + t2
80+
edge.e[1, 0] = ytd - yt - t3 + t4
81+
edge.e[2, 0] = pi_2_pi(yawtd - yawt - phit + phitd)
82+
83+
sig_t = cal_observation_sigma(dt)
84+
sig_td = cal_observation_sigma(dtd)
85+
86+
Rt = calc_rotational_matrix(tangle1)
87+
Rtd = calc_rotational_matrix(tangle2)
88+
89+
edge.omega = np.linalg.inv(Rt * sig_t * Rt.T + Rtd * sig_td * Rtd.T)
90+
edge.d_t, edge.d_td = dt, dtd
91+
edge.yaw_t, edge.yaw_td = yawt, yawtd
92+
edge.angle_t, edge.angle_td = anglet, angletd
93+
edge.id1, edge.id2 = t, td
94+
95+
return edge
96+
97+
6998
def calc_edges(xlist, zlist):
7099

71100
edges = []
72101
zids = list(itertools.combinations(range(len(zlist)), 2))
73102

74103
for (t, td) in zids:
104+
# print(xlist)
105+
# print(zlist)
75106
xt, yt, yawt = xlist[0, t], xlist[1, t], xlist[2, t]
76107
xtd, ytd, yawtd = xlist[0, td], xlist[1, td], xlist[2, td]
77108
dt, anglet, phit = zlist[t][0, 0], zlist[t][1, 0], zlist[t][2, 0]
78109
dtd, angletd, phitd = zlist[td][0, 0], zlist[td][1, 0], zlist[td][2, 0]
110+
# input()
79111

80-
edge = Edge()
81-
82-
tangle1 = yawt + anglet
83-
tangle2 = yawt + anglet
84-
t1 = dt * math.cos(tangle1)
85-
t2 = dtd * math.cos(tangle2)
86-
t3 = dt * math.sin(tangle1)
87-
t4 = dtd * math.sin(tangle2)
88-
89-
edge.e[0, 0] = xtd - xt - t1 + t2
90-
edge.e[1, 0] = ytd - yt - t3 + t4
91-
edge.e[2, 0] = yawtd - yawt - phit + phitd
92-
93-
sig_t = cal_observation_sigma(dt)
94-
sig_td = cal_observation_sigma(dtd)
95-
96-
Rt = calc_rotational_matrix(tangle1)
97-
Rtd = calc_rotational_matrix(tangle2)
98-
99-
edge.omega = np.linalg.inv(Rt * sig_t * Rt.T + Rtd * sig_td * Rtd.T)
100-
edge.d_t, edge.d_td = dt, dtd
101-
edge.yaw_t, edge.yaw_td = yawt, yawtd
102-
edge.angle_t, edge.angle_td = anglet, angletd
103-
edge.id1, edge.id2 = t, td
112+
edge = calc_edge(xt, yt, yawt, xtd, ytd, yawtd, dt,
113+
anglet, phit, dtd, angletd, phitd, t, td)
104114

105115
edges.append(edge)
106116

@@ -139,11 +149,13 @@ def fill_H_and_b(H, b, edge):
139149
return H, b
140150

141151

142-
def graph_based_slam(xEst, PEst, u, z, hxDR, hz):
152+
def graph_based_slam(u, z, hxDR, hz):
143153

144154
x_opt = copy.deepcopy(hxDR)
145155
n = len(hz) * 3
146156

157+
# return x_opt
158+
147159
for itr in range(MAX_ITR):
148160
edges = calc_edges(x_opt, hz)
149161
# print("n edges:", len(edges))
@@ -157,6 +169,7 @@ def graph_based_slam(xEst, PEst, u, z, hxDR, hz):
157169
H[0:3, 0:3] += np.identity(3) * 10000 # to fix origin
158170

159171
dx = - np.linalg.inv(H).dot(b)
172+
# print(dx)
160173

161174
for i in range(len(hz)):
162175
x_opt[0:3, i] += dx[i * 3:i * 3 + 3, 0]
@@ -166,7 +179,9 @@ def graph_based_slam(xEst, PEst, u, z, hxDR, hz):
166179
if diff < 1.0e-5:
167180
break
168181

169-
return x_opt, None
182+
# print(x_opt)
183+
184+
return x_opt
170185

171186

172187
def calc_input():
@@ -189,7 +204,7 @@ def observation(xTrue, xd, u, RFID):
189204
dy = RFID[i, 1] - xTrue[1, 0]
190205
d = math.sqrt(dx**2 + dy**2)
191206
angle = pi_2_pi(math.atan2(dy, dx)) - xTrue[2, 0]
192-
phi = angle + xTrue[2, 0]
207+
phi = pi_2_pi(math.atan2(dy, dx))
193208
if d <= MAX_RANGE:
194209
dn = d + np.random.randn() * Qsim[0, 0] # add noise
195210
anglen = angle + np.random.randn() * Qsim[1, 1] # add noise
@@ -243,9 +258,7 @@ def main():
243258
[-5.0, 20.0, 0.0]])
244259

245260
# State Vector [x y yaw v]'
246-
xEst = np.matrix(np.zeros((STATE_SIZE, 1)))
247261
xTrue = np.matrix(np.zeros((STATE_SIZE, 1)))
248-
PEst = np.eye(STATE_SIZE)
249262

250263
xDR = np.matrix(np.zeros((STATE_SIZE, 1))) # Dead reckoning
251264

@@ -263,7 +276,7 @@ def main():
263276
hxDR = np.hstack((hxDR, xDR))
264277
hz.append(z)
265278

266-
x_opt, PEst = graph_based_slam(xEst, PEst, ud, z, hxDR, hz)
279+
x_opt = graph_based_slam(ud, z, hxDR, hz)
267280

268281
# store data history
269282
hxTrue = np.hstack((hxTrue, xTrue))
@@ -272,7 +285,6 @@ def main():
272285
plt.cla()
273286

274287
plt.plot(RFID[:, 0], RFID[:, 1], "*k")
275-
plt.plot(xEst[0], xEst[1], ".r")
276288

277289
plt.plot(np.array(hxTrue[0, :]).flatten(),
278290
np.array(hxTrue[1, :]).flatten(), "-b")

0 commit comments

Comments
 (0)