-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
337 lines (270 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
from tensorflow.keras import Model
from tensorflow.keras import Input
from tensorflow.keras.layers import Conv2D, ReLU, ELU, LeakyReLU, Dropout, Dense, MaxPooling2D, Flatten, BatchNormalization
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
from tensorflow.keras.optimizers.schedules import ExponentialDecay
from tensorflow.keras.utils import plot_model
from tensorflow.keras.models import load_model
from sklearn.metrics import classification_report
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Dense, Flatten
from tensorflow.keras.layers import GlobalAveragePooling2D, Dropout, concatenate, ReLU, Add
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import AdamW
from tensorflow.keras.callbacks import ReduceLROnPlateau
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from math import floor, log
from datetime import datetime
import os
import pickle
IMG_WIDTH = 256
def get_datagen(use_default_augmentation=True, **kwargs):
kwargs.update({'rescale': 1./255})
if use_default_augmentation:
kwargs.update({
'rotation_range': 15,
'zoom_range': 0.2,
'brightness_range': (0.8, 1.2),
'channel_shift_range': 30,
'horizontal_flip': True,
})
return ImageDataGenerator(**kwargs)
def get_train_data_generator(
train_data_dir,
batch_size,
validation_split=None,
use_default_augmentation=True,
augmentations=None
):
if not augmentations:
augmentations = {}
train_datagen = get_datagen(
use_default_augmentation=use_default_augmentation,
validation_split=validation_split if validation_split else 0.0,
**augmentations
)
train_generator = train_datagen.flow_from_directory(
directory=train_data_dir,
target_size=(IMG_WIDTH, IMG_WIDTH),
batch_size=batch_size,
class_mode='binary',
subset='training',
)
validation_generator = None
if validation_split:
validation_generator = train_datagen.flow_from_directory(
directory=train_data_dir,
target_size=(IMG_WIDTH, IMG_WIDTH),
batch_size=batch_size,
class_mode='binary',
subset='validation'
)
return train_generator, validation_generator
def get_test_data_generator(test_data_dir, batch_size, shuffle=False):
test_datagen = get_datagen(use_default_augmentation=False)
return test_datagen. QAAa(
directory=test_data_dir,
target_size=(IMG_WIDTH, IMG_WIDTH),
batch_size=batch_size,
class_mode='binary',
shuffle=shuffle
)
def activation_layer(ip, activation, *args):
return {'relu': ReLU(*args)(ip),
'elu': ELU(*args)(ip),
'lrelu': LeakyReLU(*args)(ip)}[activation]
def conv2D(ip,
filters,
kernel_size,
activation,
padding='same',
pool_size=(2, 2)):
layer = Conv2D(filters,
kernel_size=kernel_size,
padding=padding)(ip)
layer = activation_layer(layer, activation=activation)
layer = BatchNormalization()(layer)
return MaxPooling2D(pool_size=pool_size, padding=padding)(layer)
def fully_connected_layer(ip,
hidden_activation,
dropout):
layer = Dense(16)(ip)
layer = activation_layer(layer, hidden_activation, *[0.1,])
return Dropout(rate=dropout)(layer)
def build_model(ip=Input(shape=(IMG_WIDTH, IMG_WIDTH, 3)),
activation='relu',
dropout=0.5,
hidden_activation='lrelu'):
layer = conv2D(ip, filters=8, kernel_size=(3, 3), activation=activation)
layer = conv2D(layer, filters=8, kernel_size=(5, 5), activation=activation)
layer = conv2D(layer, filters=16, kernel_size=(5, 5), activation=activation)
layer = conv2D(layer, filters=16, kernel_size=(5, 5), activation=activation, pool_size=(4, 4))
layer = Flatten()(layer)
layer = Dropout(rate=dropout)(layer)
layer = fully_connected_layer(layer, hidden_activation=hidden_activation, dropout=dropout)
op_layer = Dense(1, activation='sigmoid')(layer)
model = Model(ip, op_layer)
return model
def evaluate_model(model, test_data_dir, batch_size):
data = get_test_data_generator(test_data_dir, batch_size)
return model.evaluate(data)
def predict(model, data, steps=None, threshold=0.5):
predictions = model.predict(data, steps=steps, verbose=1)
return predictions, np.where(predictions >= threshold, 1, 0)
def save_model_history(history, filename):
with open(filename, 'wb') as f:
pickle.dump(history.history, f)
def get_activation_model(model, conv_idx):
conv_layers = [layer for layer in model.layers if 'conv' in layer.name]
selected_layers = [layer for index, layer in enumerate(conv_layers) if index in conv_idx]
activation_model = Model(
inputs=model.inputs,
outputs=[layer.output for layer in selected_layers]
)
return activation_model
def plot_loss_curve(history):
plt.plot(history.history['loss'], 'r', label='train')
plt.plot(history.history['val_loss'], 'g', label='validation')
plt.xlabel('Epochs')
plt.ylabel('loss')
plt.legend()
plt.show()
def get_classification_report(
model, data_dir, batch_size=256,
steps=None, threshold=0.5, output_dict=False
):
data = get_test_data_generator(data_dir, batch_size=batch_size)
predictions, binary_predictions = predict(model, data, steps, threshold)
predictions = predictions.reshape((predictions.shape[0],)) # Apply reshape only to predictions
binary_predictions = (predictions > 0.5).astype(int) # Convert probabilities to binary (0/1)
return classification_report(data.classes, binary_predictions, output_dict=output_dict)
def train_model(model,
train_data_dir,
validation_split=None,
batch_size=256,
use_default_augmentation=True,
augmentations=None,
epochs=25,
lr=1e-3,
loss='binary_crossentropy',
compile=True,
lr_decay=True,
decay_rate=0.10,
decay_limit=1e-6,
checkpoint=True,
stop_early=True,
monitor='val_accuracy',
mode='max',
patience=20,
tensorboard=True,
loss_curve=True):
run_time = datetime.now().strftime("%Y%m%d-%H%M%S")
train_generator, validation_generator = get_train_data_generator(
train_data_dir=train_data_dir,
batch_size=batch_size,
validation_split=validation_split,
use_default_augmentation=use_default_augmentation,
augmentations=augmentations
)
callbacks = []
if checkpoint:
filepath = f'run_{run_time}_best_model.keras'
model_checkpoint = ModelCheckpoint(
filepath, monitor='val_accuracy', verbose=1,
save_best_only=True
)
callbacks.append(model_checkpoint)
if stop_early:
callbacks.append(
EarlyStopping(
monitor=monitor,
mode=mode,
patience=patience,
verbose=1
)
)
if tensorboard:
log_dir = "logs/fit/" + run_time
callbacks.append(TensorBoard(log_dir, histogram_freq=1, write_images=True))
if compile:
if lr_decay:
num_times = floor(log(decay_limit / lr, decay_rate))
per_epoch = epochs // num_times
lr = ExponentialDecay(
lr,
decay_steps=(train_generator.samples // batch_size) * per_epoch,
decay_rate=decay_rate,
staircase=True,
)
optimizer = Adam(learning_rate=lr)
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
history = model.fit(
train_generator,
epochs=epochs,
verbose=1,
callbacks=callbacks,
validation_data=validation_generator,
steps_per_epoch=train_generator.samples // batch_size,
validation_steps=validation_generator.samples // batch_size if validation_generator else None,
)
if loss_curve:
plot_loss_curve(history)
return history
def temp(test_data_dir, batch_size, shuffle=False):
test_datagen = get_datagen(use_default_augmentation=False)
return test_datagen.flow_from_directory(
directory=test_data_dir,
target_size=(IMG_WIDTH, IMG_WIDTH),
batch_size=batch_size,
class_mode=None,
shuffle=shuffle
)
def main():
# Run the below code to train the model.
# train_generator, _ = get_train_data_generator('Train_directory', batch_size=32)
# print(train_generator.class_indices)
# train_data_dir = 'vt25/'
# val_split, epochs, batch_size = 0.20, 5, 256
# decay_rate, decay_limit = 0.10, 1e-6
# model = build_mesonet()
# history = train_model(
# model,
# train_data_dir,
# validation_split=val_split,
# epochs=epochs,
# decay_rate=decay_rate,
# decay_limit=decay_limit,
# )
# return model, history # Ensure history is returned
# Once the model is trained for testing either a group of videos or a single video refer to the below code blocks.
# model_exp = load_model('Model_name.keras')
# for video in os.listdir('test25/AI'):
# if video == '.DS_Store':
# continue
# data = temp(f'Directory', 64)
# predictions = model_exp.predict(data)
# # print(data)
# # print(predictions)
# if predictions.mean() > 0.5:
# print('Real')
# else:
# print('Fake')
# data = temp('Directory',64)
# predictions = model_exp.predict(data)
# print(predictions)
# print(data.classes)
# if predictions.mean() > 0.5:
# print('Real')
# else:
# print('Fake')
# The below code is for testing the accuracy and various parameters of the model.
# model_exp = load_model('run_20250226-175918_best_model.keras')
#evaluate_model(model_exp, 'Video_train_img', 64)
#print(get_classification_report(model_exp, 'Video_train_img'))
return 0
if __name__ == "__main__":
main()