-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathunit_test.py
262 lines (196 loc) · 10.3 KB
/
unit_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import sys
import importlib
import pickle
import lzma
import PIL.Image
import numpy as np
import torch
# %%
class Attributes:
pass
class UnitTest:
def __init__(self,
easyocr_module,
test_data = "./data/EasyOcrUnitTestPackage.pickle",
image_data_dir = "../examples",
verbose = 0,
numeric_acceptance_error = 0.1):
self.verbose = verbose
easy_ocr_init = os.path.join(easyocr_module, "__init__.py")
if not os.path.isfile(easy_ocr_init):
raise FileNotFoundError("Invalid easyocr_module. The directory should contain __init__.py.")
spec = importlib.util.spec_from_file_location("easyocr", easy_ocr_init)
easyocr = importlib.util.module_from_spec(spec)
sys.modules["easyocr"] = easyocr
spec.loader.exec_module(easyocr)
self.easyocr = easyocr
if not hasattr(self.easyocr, 'utils'):
setattr(self.easyocr, 'utils', importlib.import_module('easyocr.utils'))
if not hasattr(self.easyocr, 'detection'):
setattr(self.easyocr, 'detection', importlib.import_module('easyocr.detection'))
if not hasattr(self.easyocr, 'recognition'):
setattr(self.easyocr, 'recognition', importlib.import_module('easyocr.recognition'))
self.easyocr_dir = os.path.dirname(easyocr.__file__)
print("Unit test is set for EasyOCR at {}".format(os.path.abspath(self.easyocr_dir)))
self.image_data_dir = image_data_dir
self.set_data(test_data)
self.set_easyocr()
self.numeric_acceptance_error = numeric_acceptance_error
def set_data(self, test_data):
self.inputs = Attributes()
with lzma.open(test_data, 'rb') as fid:
solution_book = pickle.load(fid)
self.test_book = solution_book['tests']
if any([file not in os.listdir(self.image_data_dir) for file in solution_book['inputs']['images'].keys()]):
raise FileNotFoundError("Cannot find {} in {}.").format(', '.join([file for file in solution_book['inputs']['images'].keys()
if file not in os.listdir(self.image_data_dir)], self.image_data_dir))
images = {os.path.splitext(file)[0]: {
key: np.asarray(PIL.Image.open(os.path.join(self.image_data_dir, file)).crop(crop_box))[:,:,::-1] for (key,crop_box) in page.items()
} for (file,page) in solution_book['inputs']['images'].items()}
english_mini_bgr, english_mini_gray = self.easyocr.utils.reformat_input(images['english']['mini'])
english_small_bgr, english_small_gray = self.easyocr.utils.reformat_input(images['english']['small'])
images['english'].update({'mini_bgr': english_mini_bgr,
'mini_gray': english_mini_gray,
'small_bgr': english_small_bgr,
'small_gray': english_small_gray,
})
setattr(self.inputs, 'images', self.dict2attr(images))
setattr(self.inputs, 'easyocr_config', self.dict2attr(solution_book['inputs']['easyocr_config']))
def dict2attr(self, dict_):
attr = Attributes()
[setattr(attr, key, self.dict2attr(value)) if isinstance(value, dict) else setattr(attr, key, value) for (key,value) in dict_.items()]
return attr
def count_parameters(self, model):
return sum([param.numel() for param in model.parameters()])
def get_weight_norm(self, model):
with torch.no_grad():
return sum([param.norm() for param in model.parameters()]).cpu().item()
def get_nested_attr(self, parent, attr):
if len(attr.split(".")) == 1:
return getattr(parent, attr)
else:
attrs = attr.split(".")
parent = getattr(parent, attrs[0])
attr = ".".join(attrs[1:])
attr = self.get_nested_attr(parent, attr)
return attr
def easyocr_read_as(self, image, language):
if not isinstance(language, list):
language = [language]
reader = self.easyocr.Reader(language)
_, pred, confidence = reader.readtext(image)[0]
reader = None
torch.cuda.empty_cache()
return pred, confidence
def set_easyocr(self):
ocr = self.easyocr.Reader([self.inputs.easyocr_config.main_language])
setattr(self.easyocr, 'ocr', ocr)
def validate(self, test, solution, dtype):
if dtype == str:
return test == solution
elif np.issubdtype(dtype, np.integer):
return abs(1-test/solution) < self.numeric_acceptance_error
elif np.issubdtype(dtype, np.inexact):
return abs(1-test/solution) < self.numeric_acceptance_error
elif dtype == dict:
return self.are_dicts_equal(test, solution)
elif dtype == list or dtype == tuple:
return self.are_lists_equal(test, solution)
elif dtype == np.ndarray:
return (abs(1-test/solution) < self.numeric_acceptance_error).all()
elif dtype == torch.Tensor:
return (abs(1-test/solution) < self.numeric_acceptance_error).all()
else:
raise TypeError("Unsupport data type ({}) to validate. Supporting types are str, int, float, dict, list, np.ndarray, or torch.Tensor".format(dtype))
def are_dicts_equal(self, test, solution):
if test.keys() == solution.keys():
return all([self.validate(test[key], solution[key], type(solution[key])) for key in solution.keys()])
else:
return False
def are_lists_equal(self, test, solution):
if len(test) == len(solution):
return all([self.validate(tt, ss, type(ss)) for (tt,ss) in zip(test, solution)])
else:
return False
def is_list_or_tuple(self, test):
return isinstance(test, list) or isinstance(test, tuple)
#Should check length of results/solutions/dtypes
def validate_all(self, results, solutions, dtypes):
if not isinstance(results, list):
results = [results]
if not isinstance(solutions, list):
solutions = [solutions]
if not isinstance(dtypes, list):
dtypes = [dtypes]
validation = []
for (result, solution, dtype) in zip(results, solutions, dtypes):
if (not self.is_list_or_tuple(result)
and not self.is_list_or_tuple(result)
and not self.is_list_or_tuple(result)
):
validation.append(self.validate(result, solution, type(solution)))
elif(self.is_list_or_tuple(result)
and self.is_list_or_tuple(result)
and self.is_list_or_tuple(result)
):
validation.append(self.validate_all(results, solutions, type(solution)))
else:
raise
return all(validation)
def do_test(self, verbose = None):
if verbose is not None:
self.verbose = verbose
num_module_to_test = len(self.test_book)
num_module_pass = 0
print("Testing EasyOCR: {:d} modules will be tested.\n".format(num_module_to_test))
for name,tests in self.test_book.items():
num_test = len(tests)
num_passed = 0
min_pass = sum([test['severity'] == 'Error' for test in tests.values()])
if self.verbose > 0:
print("##Testing module {}: {:d} tests will be performed.".format(name, num_test))
for test_id, test in tests.items():
if self.verbose > 1:
print("#### {}: {}".format(test_id, test['description']))
if test['method'].startswith('unit_test.'):
test['method'] = '.'.join(test['method'].split('.')[1:])
test_method = self.get_nested_attr(self, test['method'])
test['input'] = [(self.get_nested_attr(self, '.'.join(input_.split('.')[1:]))
if input_.startswith('unit_test.') else input_) if isinstance(input_, str) else input_ for input_ in test['input']]
if verbose > 3:
print("###### Input: {}".format(test['input']))
results = test_method(*test['input'])
if verbose > 2:
print("###### Expected output: {}".format(test['output']))
print("###### Received output: {}".format(results))
test_result = self.validate(results, test['output'], type(test['output']))
if test_result:
num_passed += 1
if self.verbose > 1:
print("#### Passed. [{:d}/{:d}]".format(num_passed, num_test))
else:
if test['severity'] == "Warning":
num_passed += 1
if self.verbose > 1:
print("#### Passed. [{:d}/{:d}]".format(num_passed, num_test))
if self.verbose > 2:
print("##### Warning: While the result is considered as passed, the test yields results ({}) \
that are different from the expected values ({}). It is strongly recommended to make sure \
that this is expected.".format(results, test['output']))
else:
if self.verbose > 1:
print("#### Failed")
if self.verbose > 2:
print("##### The test yields results ({}) which are different from the expected values ({}).")
if num_passed >= min_pass:
num_module_pass += 1
if self.verbose > 0:
print("##Module {}: Passed.\n".format(name))
else:
print("##Module {}: Failed.\n".format(name))
print("#"*50)
if num_module_pass >= num_module_to_test:
print("Testing completed:\n Final result: Passed.")
else:
print("Testing completed:\n Final result: Failed.")