-
-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathBinaryTree.java
620 lines (463 loc) Β· 13.1 KB
/
BinaryTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
package section24_BinaryTree;
import java.util.Scanner;
import java.util.Stack;
public class BinaryTree {
Scanner sc = new Scanner(System.in);
private class Node {
int data;
Node left;
Node right;
}
private Node root;
public BinaryTree() {
this.root = takeInput(null, false);
}
// parameterized constructor for tree construction using preorder and
// inorder traversal
public BinaryTree(int[] inTraverse, int[] preTraverse) {
int inStartIdx = 0, inEndIdx = inTraverse.length - 1;
int preStartIdx = 0, preEndIdx = preTraverse.length - 1;
this.root = construct(preTraverse, preStartIdx, preEndIdx, inTraverse, inStartIdx, inEndIdx);
}
private Node takeInput(Node parent, boolean isLeftChild) {
// prompt
if (parent == null) {
System.out.println("Enter the data for root node: ");
} else {
if (isLeftChild)
System.out.println("Enter the data for left child of " + parent.data);
else
System.out.println("Enter the data for right child of " + parent.data);
}
// take input of data
int item = sc.nextInt();
// create new Node
Node newNode = new Node();
newNode.data = item;
System.out.println("Do you have left child of " + newNode.data + " ?, press Y/N");
char hasLeft = sc.next().charAt(0);
// if left child exists, create it
if (hasLeft == 'Y') {
newNode.left = takeInput(newNode, true);
}
System.out.println("Do you have right child of " + newNode.data + " ?, press Y/N");
char hasRight = sc.next().charAt(0);
// if right child exists, create it
if (hasRight == 'Y') {
newNode.right = takeInput(newNode, false);
}
// node is ready
return newNode;
}
// O(N)Time
public void display() {
System.out.println("\n--------------------");
display(root);
System.out.println("--------------------");
}
private void display(Node node) {
// base case
if (node == null)
return;
// self-work
String str = "";
if (node.left != null)
str += node.left.data;
else
str += ". ";
str += " => " + node.data + " <= ";
if (node.right != null)
str += node.right.data;
else
str += '.';
System.out.println(str);
// smaller problems
display(node.left);
display(node.right);
}
// O(N)Time
public int size() {
return size(root);
}
private int size(Node node) {
if (node == null)
return 0;
int lsize = size(node.left);
int rsize = size(node.right);
return lsize + rsize + 1;
}
// O(N)Time
public int max() {
return max(root);
}
/*
* private int max(Node node) {
*
* int totalMax = node.data;
*
* if (node.left != null) { int lmax = max(node.left);
*
* if (lmax > totalMax) totalMax = lmax; }
*
* if (node.right != null) { int rmax = max(node.right);
*
* if (rmax > totalMax) totalMax = rmax; }
*
* return totalMax; }
*/
// clean code to find max
private int max(Node node) {
if (node == null)
return Integer.MIN_VALUE;
int lmax = max(node.left);
int rmax = max(node.right);
return Math.max(node.data, Math.max(lmax, rmax));
}
// O(N)Time
public boolean find(int item) {
return find(root, item);
}
private boolean find(Node node, int item) {
if (node == null)
return false;
if (node.data == item)
return true;
boolean lResult = find(node.left, item);
if (lResult)
return true;
boolean rResult = find(node.right, item);
if (rResult)
return true;
return false;
}
// O(N)Time
public int height() {
return height(root);
}
private int height(Node node) {
if (node == null)
return -1;
int lheight = height(node.left);
int rheight = height(node.right);
return Math.max(lheight, rheight) + 1; // self-work
}
// approach 1 - using global variable
private int diameterAns = Integer.MIN_VALUE;
public int diameter() {
diameter(root);
return diameterAns;
}
private void diameter(Node node) {
if (node == null) {
return;
}
int presentNodeRoot = height(node.left) + height(node.right) + 2;
if (presentNodeRoot > diameterAns) {
diameterAns = presentNodeRoot;
}
diameter(node.left);
diameter(node.right);
}
// approach 2
// O(N^2)Time
public int diameter2() {
return diameter2(root);
}
private int diameter2(Node node) {
if (node == null)
return 0;
// max distance between 2 leaf nodes might lie in left subtree,
// factor1: left diameter
int lDiameter = diameter2(node.left);
// max distance between 2 leaf nodes might lie in right subtree,
// factor2: right diameter
int rDiameter = diameter2(node.right);
// self node might be the root node of diameter, factor3: self diameter
int rootDiameter = height(node.left) + height(node.right) + 2;
return Math.max(rootDiameter, Math.max(lDiameter, rDiameter));
}
private class DiaPair {
int pairDiameter = 0;
int pairHeight = -1;
}
public int diameter3() {
DiaPair ansPair = diameter3(root);
return ansPair.pairDiameter;
}
private DiaPair diameter3(Node node) {
if (node == null) {
return new DiaPair();
}
DiaPair leftDiaPair = diameter3(node.left);
DiaPair rightDiaPair = diameter3(node.right);
DiaPair selfDiaPair = new DiaPair();
int lDiameter = leftDiaPair.pairDiameter;
int rDiameter = rightDiaPair.pairDiameter;
int selfDiameter = leftDiaPair.pairHeight + rightDiaPair.pairHeight + 2;
selfDiaPair.pairDiameter = Math.max(selfDiameter, Math.max(lDiameter, rDiameter));
selfDiaPair.pairHeight = Math.max(leftDiaPair.pairHeight, rightDiaPair.pairHeight) + 1;
return selfDiaPair;
}
// O(N^2) Time
public boolean isBalanced() {
return isBalanced(root);
}
private boolean isBalanced(Node node) {
if (node == null) {
return true;
}
boolean leftBalanced = isBalanced(node.left);
boolean rightBalanced = isBalanced(node.right);
// for root node of current subtree
int balancingFactor = height(node.left) - height(node.right);
if (leftBalanced && rightBalanced && balancingFactor >= -1 && balancingFactor <= 1) {
return true;
} else {
return false;
}
}
// Efficient approach to check if binary tree is Balanced
private class BalPair {
boolean isBal = true;
int ht = -1;
}
// O(N) Time
public boolean isBalanced3() {
BalPair ans = isBalanced3(root);
return ans.isBal;
}
private BalPair isBalanced3(Node node) {
if (node == null) {
return new BalPair();
}
BalPair leftBalPair = isBalanced3(node.left);
BalPair rightBalPair = isBalanced3(node.right);
BalPair selfBalPair = new BalPair();
// logic from first approach
boolean leftBalanced = leftBalPair.isBal;
boolean rightBalanced = rightBalPair.isBal;
int balancingFactor = leftBalPair.ht - rightBalPair.ht;
if (leftBalanced && rightBalanced && balancingFactor >= -1 && balancingFactor <= 1) {
selfBalPair.isBal = true;
} else {
selfBalPair.isBal = false;
}
selfBalPair.ht = Math.max(leftBalPair.ht, rightBalPair.ht) + 1;
return selfBalPair;
}
// Binary Tree Traversals
public void preorder() {
preorder(root);
}
private void preorder(Node node) {
if (node == null)
return;
// NLR - Node, Left, Right
System.out.print(node.data + " ");
preorder(node.left);
preorder(node.right);
}
public void inorder() {
inorder(root);
}
private void inorder(Node node) {
if (node == null)
return;
// LNR, Left, Node, Right
inorder(node.left);
System.out.print(node.data + " ");
inorder(node.right);
}
public void postorder() {
postorder(root);
}
private void postorder(Node node) {
if (node == null)
return;
// LRN, Left, Right, Node
postorder(node.left);
postorder(node.right);
System.out.print(node.data + " ");
}
// pre-order traversal using Iterative approach
private class Pair {
Node node;
boolean selfDone; // Node traversed
boolean leftDone; // Left traversed
boolean rightDone; // Right traversed
}
public void preorderIterative() {
// create a Stack
Stack<Pair> stack = new Stack<>();
// create starting pair
Pair startPair = new Pair();
startPair.node = root;
// put starting pair in Stack
stack.push(startPair);
while (!stack.isEmpty()) {
Pair topmostPair = stack.peek();
if (topmostPair.node == null) {
stack.pop();
continue;
}
if (topmostPair.selfDone == false) {
System.out.print(topmostPair.node.data + " "); // N
topmostPair.selfDone = true;
} else if (topmostPair.leftDone == false) {
// create a new pair
Pair newLPair = new Pair();
newLPair.node = topmostPair.node.left; // L
// if (newLPair.node != null)
stack.push(newLPair);
topmostPair.leftDone = true;
} else if (topmostPair.rightDone == false) {
Pair newRPair = new Pair();
newRPair.node = topmostPair.node.right; // R
// if (newRPair.node != null)
stack.push(newRPair);
topmostPair.rightDone = true;
} else {
stack.pop();
}
}
}
public int sum() {
return sum(root);
}
private int sum(Node node) {
if (node == null) {
return 0;
}
int leftSum = sum(node.left);
int rightSum = sum(node.right);
return leftSum + rightSum + node.data;
}
// maximum subtree sum
// approach 1 - using global variable
/*
* private int maxSubsumAns = Integer.MIN_VALUE;
*
* public int maxSubtreeSum1() { maxSubtreeSum1(root); return maxSubsumAns;
* }
*
* private void maxSubtreeSum1(Node node) {
*
* if (node == null) return;
*
* int lsum = sum(node.left); if (lsum > maxSubsumAns) { maxSubsumAns =
* lsum; } maxSubtreeSum1(node.left);
*
* int rsum = sum(node.right); if (rsum > maxSubsumAns) { maxSubsumAns =
* rsum; } maxSubtreeSum1(node.right);
*
* int currentSubtreesum = lsum + rsum + node.data;
*
* if (currentSubtreesum > maxSubsumAns) { maxSubsumAns = currentSubtreesum;
* } }
*/
// clean code of maxSubtreeSum1()
private int maxSubsumAns2 = Integer.MIN_VALUE;
public int maxSubtreeSum1() {
maxSubtreeSum1(root);
return maxSubsumAns2;
}
private int maxSubtreeSum1(Node node) {
if (node == null)
return 0;
int lsum = maxSubtreeSum1(node.left);
int rsum = maxSubtreeSum1(node.right);
int nodeans = lsum + rsum + node.data;
if (nodeans > maxSubsumAns2) {
maxSubsumAns2 = nodeans;
}
return nodeans;
}
// O(N^2) Time
public int maxSubtreeSum2() {
return maxSubtreeSum2(root);
}
// recursion returns maximum subtree sum
private int maxSubtreeSum2(Node node) {
if (node == null)
return Integer.MIN_VALUE; // not zero, because node data can be
// negative & we are finding Max value
int lMaxSubtreeSum = maxSubtreeSum2(node.left);
int rMaxSubtreeSum = maxSubtreeSum2(node.right);
// current node sum + entire left subtree sum + entire right subtree sum
// int selfSum = node.data + sum(node.left) + sum(node.right);
int selfSum = sum(node);
int ans = Math.max(selfSum, Math.max(lMaxSubtreeSum, rMaxSubtreeSum));
return ans;
}
// approach 3
private class MaxSubtreeSumPair {
int entireSum = 0;
int maxSubtreeSum = Integer.MIN_VALUE;
}
// O(N) Time
public int maxSubtreeSum3() {
return maxSubtreeSum3(root).maxSubtreeSum;
}
private MaxSubtreeSumPair maxSubtreeSum3(Node node) {
if (node == null) {
return new MaxSubtreeSumPair();
}
MaxSubtreeSumPair lp = maxSubtreeSum3(node.left);
MaxSubtreeSumPair rp = maxSubtreeSum3(node.right);
MaxSubtreeSumPair selfpair = new MaxSubtreeSumPair();
selfpair.entireSum = lp.entireSum + rp.entireSum + node.data;
selfpair.maxSubtreeSum = Math.max(selfpair.entireSum, Math.max(lp.maxSubtreeSum, rp.maxSubtreeSum));
return selfpair;
}
public Node construct(int[] pre, int plow, int phigh, int[] in, int ilow, int ihigh) {
if (plow > phigh || ilow > ihigh) {
return null;
}
// create a new node with plow
Node newNode = new Node();
newNode.data = pre[plow]; // root node initially
// search for pre[plow] in inorder array
int searchIdx = -1;
int numElements = 0;
for (int i = ilow; i <= ihigh; i++) {
if (pre[plow] == in[i]) {
searchIdx = i;
break;
}
numElements++;
}
// left and right child call
newNode.left = construct(pre, plow + 1, plow + numElements, in, ilow, searchIdx - 1);
newNode.right = construct(pre, plow + numElements + 1, phigh, in, searchIdx + 1, ihigh);
return newNode;
}
public boolean flipEquivalent(BinaryTree other) {
return flipEquivalent(this.root, other.root);
}
private boolean flipEquivalent(Node node1, Node node2) {
// if both nodes are null, they are flip equivalent
if (node1 == null && node2 == null) {
return true;
}
// if either of node is null, they are not flip equivalent
if (node1 == null || node2 == null) {
return false;
}
if (node1.data != node2.data) {
return false;
}
// case 1 - node is not flipped
// left subtree of node1 & left subtree of node2
boolean leftleft = flipEquivalent(node1.left, node2.left);
// right subtree of node1 & right subtree of node2
boolean rightright = flipEquivalent(node1.right, node2.right);
if (leftleft && rightright)
return true;
// case 2 - node is flipped
// left subtree of node1 & right subtree of node2
boolean leftright = flipEquivalent(node1.left, node2.right);
// right subtree of node1 & left subtree of node2
boolean rightleft = flipEquivalent(node1.right, node2.left);
return (leftleft && rightright) || (leftright && rightleft);
}
}