|
| 1 | +/- |
| 2 | +Copyright 2025 The Formal Conjectures Authors. |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + https://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +-/ |
| 16 | + |
| 17 | +import FormalConjectures.Util.ProblemImports |
| 18 | + |
| 19 | +/-! |
| 20 | +# Erdős Problem 283 |
| 21 | +
|
| 22 | +*References:* |
| 23 | +- [erdosproblems.com/283](https://www.erdosproblems.com/283) |
| 24 | +- [Gr63] Graham, R. L., A theorem on partitions. J. Austral. Math. Soc. (1963), 435-441. |
| 25 | +-/ |
| 26 | + |
| 27 | +open Filter Polynomial Finset |
| 28 | + |
| 29 | +namespace Erdos283 |
| 30 | + |
| 31 | +/-- |
| 32 | +Given a polynomial `p`, the predicate that if the leading coefficient is positive and |
| 33 | +there exists no $d≥2$ with $d ∣ p(n)$ for all $n≥1$, then for all sufficiently large $m$, |
| 34 | +there exist integers $1≤n_1<\dots < n_k$ such that $$1=\frac{1}{n_1}+\cdots+\frac{1}{n_k}$$ |
| 35 | +and $$m=p(n_1)+\cdots+p(n_k)$$? |
| 36 | +-/ |
| 37 | +def Condition (p : ℤ[X]) : Prop := |
| 38 | + p.leadingCoeff > 0 → ¬ (∃ d ≥ 2, ∀ n ≥ 1, d ∣ p.eval n) → |
| 39 | + ∀ᶠ m in atTop, ∃ k ≥ 1, ∃ n : Fin (k + 1) → ℤ, 0 = n 0 ∧ StrictMono n ∧ |
| 40 | + 1 = ∑ i ∈ Finset.Icc 1 (Fin.last k), (1 : ℚ) / (n i) ∧ |
| 41 | + m = ∑ i ∈ Finset.Icc 1 (Fin.last k), p.eval (n i) |
| 42 | + |
| 43 | +/-- |
| 44 | +Let $p\colon \mathbb{Z} \rightarrow \mathbb{Z}$ be a polynomial whose leading coefficient is |
| 45 | +positive and such that there exists no $d≥2$ with $d ∣ p(n)$ for all $n≥1$. Is it true that, |
| 46 | +for all sufficiently large $m$, there exist integers $1≤n_1<\dots < n_k$ such that |
| 47 | +$$1=\frac{1}{n_1}+\cdots+\frac{1}{n_k}$$ |
| 48 | +and |
| 49 | +$$m=p(n_1)+\cdots+p(n_k)$$? |
| 50 | +-/ |
| 51 | +@[category research open, AMS 11] |
| 52 | +theorem erdos_283 : (∀ p : ℤ[X], Condition p) ↔ answer(sorry) := by |
| 53 | + sorry |
| 54 | + |
| 55 | + |
| 56 | +/-- |
| 57 | +Graham [Gr63] has proved this when $p(x)=x$. |
| 58 | +-/ |
| 59 | +@[category research solved, AMS 11] |
| 60 | +theorem erdos_283.variants.graham : Condition X := by |
| 61 | + sorry |
| 62 | + |
| 63 | + |
| 64 | +-- TODO(firsching): formalize the rest of the additional material |
| 65 | + |
| 66 | +end Erdos283 |
0 commit comments