Skip to content

Commit 7a5b741

Browse files
committed
Fixes
1 parent b45f9dd commit 7a5b741

File tree

1 file changed

+11
-5
lines changed

1 file changed

+11
-5
lines changed

FormalConjectures/Wikipedia/Kaplansky.lean

Lines changed: 11 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -54,6 +54,7 @@ A unit in `K[G]` is trivial if it is exactly of the form `kg` where:
5454
def IsTrivialUnit (u : MonoidAlgebra K G) : Prop :=
5555
∃ (k : Kˣ) (g : G), u = MonoidAlgebra.single g (k : K)
5656

57+
omit hG in
5758
@[category API, AMS 16 20]
5859
lemma IsTrivialUnit.isUnit {u : MonoidAlgebra K G} (h : IsTrivialUnit u) : IsUnit u := by
5960
obtain ⟨k, g, rfl⟩ := h
@@ -77,10 +78,11 @@ theorem counter_unit_conjecture :
7778
/--
7879
There is a counterexample to **Unit Conjecture** in any characteristic.
7980
-/
80-
@[category research open, AMS 16 20]
81-
theorem counter_unit_conjecture_weak (n : ℕ) :
81+
@[category research solved, AMS 16 20]
82+
theorem counter_unit_conjecture_weak (p : ℕ) (hp : p = 0 ∨ p.Prime) :
8283
∃ (G : Type) (_ : Group G) (_ : Monoid.IsTorsionFree G),
83-
∃ (_ : Field K) (_ : Char K n) (u : (MonoidAlgebra K G)ˣ), ¬IsTrivialUnit u.val := by
84+
∃ (_ : Field K) (_ : CharP K p) (u : (MonoidAlgebra K G)ˣ), ¬IsTrivialUnit u.val := by
85+
sorry
8486

8587
/-! ## Counterexamples -/
8688

@@ -93,22 +95,26 @@ abbrev PromislowGroup : Type :=
9395
letI b := FreeGroup.of (1 : Fin 2)
9496
PresentedGroup {b⁻¹ * a * a * b * a * a, a⁻¹ * b * b * a * b * b}
9597

98+
/--
99+
The Promislow group is torsion-free.
100+
-/
101+
@[category API, AMS 20]
96102
lemma promislow_group_is_torsionfree :
97103
Monoid.IsTorsionFree PromislowGroup := by
98104
sorry
99105

100106
/--
101107
If $P$ is the Promislow group, then the group ring $\mathbb{F}_p[P]$ has a non-trivial unit.
102108
-/
103-
@[category test]
109+
@[category research solved, AMS 16 20]
104110
theorem unit_conjecture.counterexamples.i (p : ℕ) [hp : Fact p.Prime] :
105111
∃ (u : (MonoidAlgebra (ZMod p) PromislowGroup)ˣ), ¬IsTrivialUnit u.val := by
106112
sorry
107113

108114
/--
109115
If $P$ is the Promislow group, then the group ring $\mathbb{C}[P]$ has a non-trivial unit.
110116
-/
111-
@[category test]
117+
@[category research solved, AMS 16 20]
112118
theorem unit_conjecture.counterexamples.ii :
113119
∃ (u : (MonoidAlgebra ℂ PromislowGroup)ˣ), ¬IsTrivialUnit u.val := by
114120
sorry

0 commit comments

Comments
 (0)