-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation.py
248 lines (157 loc) · 8.55 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
import pandas as pd
import numpy as np
import json
import nltk
import re
import csv
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from transformers import GPT2Tokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
import torch
import pandas as pd
from torch.utils.data import Dataset, DataLoader, random_split
import numpy as np
from scipy.stats import ks_2samp
from scipy.special import rel_entr
from scipy.stats import chisquare
import scipy.stats as st
from statistics import mean
import argparse
from sampling_methods import gpt2_stage3_temp, gpt2_stage3_temp_topk, gpt2_stage3_temp_NS, gpt2_stage3_temp_topk_NS, gpt3_stage3_temp, stage4, gpt2_stage5, gpt3_stage5
from prompt_based import gpt2_prompt_eng_temp, gpt2_prompt_eng_topp, gpt3_prompt_eng_topp
from utils import count_tokens, new_dist_metric, create_hist
from collections import Counter
# In[ ]:
def parse_option():
parser = argparse.ArgumentParser('Decoding Algorithm Stealing')
parser.add_argument('--algorithm', type=str, default='Greedy Search',
help='The decoding algorithm used in the API')
parser.add_argument('--targeted_model', type=str, default='gpt2',
help='The type of the targeted model')
parser.add_argument('--original_k', type=int, default=0,
help='The hyperparameter k in the original distribution')
parser.add_argument('--original_p', type=float, default=1,
help='The hyperparameter p in the original distribution')
parser.add_argument('--original_temperature', type=float, default=1,
help='The hyperparameter temperature in the original distribution')
parser.add_argument('--estimated_k', type=int, default=0,
help='The estimated k')
parser.add_argument('--estimated_p', type=float, default=1,
help='The estimated p')
parser.add_argument('--estimated_temperature', type=float, default=1,
help='The estimated temperature')
parser.add_argument('--number_of_queries', type=int, default=20000,
help='Number of queries used to provide distributions')
args = parser.parse_args()
return args
# In[ ]:
device=torch.device("cuda")
df = pd.read_csv('6_genre_eval_data.txt', header=None, delimiter = "\t")
df.columns = ['Stories']
# To make sure all samples have a permitted length
long_tokens = []
long_tokens_ids = []
tokenizer = GPT2Tokenizer.from_pretrained('gpt2',
bos_token='<BOS>',
eos_token='<EOS>',
pad_token='<|pad|>')
for i in range(len(df)):
text = df.iloc[i,0]
encoded = tokenizer(text)
if len(encoded['input_ids']) >= 1022:
long_tokens.append(text)
long_tokens_ids.append(i)
for i in long_tokens:
df.drop(df.index[df['Stories'] == i], inplace=True)
df = df.reset_index()
df.drop(['index'], axis=1)
#openai.api_key = "The Public Key"
# In[ ]:
def KL_evaluation(model_name, test_dataset, k1, p1, temperature1, k2, p2, temperature2, num_of_queries):
torch.manual_seed(42)
tokenizer_1 = GPT2Tokenizer.from_pretrained(model_name)
model_1 = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id).cuda()
print("Correct")
KL_scores = []
chi_scores = []
for i in [9, 20]:
for j in [0, 10, 25]:
temp = test_dataset['Stories'][i].split()[2:10+j]
temp = ' '.join(temp)
seq_length = len(tokenizer_1(temp, return_tensors='pt')['input_ids'][0])
input_ids = tokenizer_1(temp, return_tensors='pt').to(device)
original_tokens_1 = []
for k in range(num_of_queries):
temp_text = model_1.generate(**input_ids, max_length=seq_length+2, do_sample=True, top_k = k1, top_p = p1, temperature = temperature1)
temp_text = tokenizer_1.decode(temp_text[0][seq_length], skip_special_tokens=True)
original_tokens_1.append(temp_text)
original_tokens_1_df = count_tokens(original_tokens_1)
original_tokens_1_df = original_tokens_1_df.reset_index()
original_tokens_1_df.drop(['index'], axis=1)
predicted_tokens_1 = []
for k in range(num_of_queries):
temp_text = model_1.generate(**input_ids, max_length=seq_length+2, do_sample=True, top_k = k2, top_p = p2, temperature = temperature2)
temp_text = tokenizer_1.decode(temp_text[0][seq_length], skip_special_tokens=True)
predicted_tokens_1.append(temp_text)
predicted_tokens_1_df = count_tokens(predicted_tokens_1)
predicted_tokens_1_df = predicted_tokens_1_df.reset_index()
predicted_tokens_1_df.drop(['index'], axis=1)
ls_new1, ls_new2 = new_dist_metric(original_tokens_1_df, predicted_tokens_1_df)
ls_new1 = [(element / num_of_queries) for element in ls_new1]
ls_new2 = [(element / num_of_queries) for element in ls_new2]
print(sum(rel_entr(ls_new2, ls_new1)))
KL_scores.append(sum(rel_entr(ls_new2, ls_new1)))
conf_interval = st.t.interval(alpha=0.95, df=len(KL_scores)-1, loc=np.mean(KL_scores), scale=st.sem(KL_scores))
estimated_value = mean(KL_scores)
return conf_interval, estimated_value
# In[ ]:
def KS_evaluation(model_name, test_dataset, k1, p1, temperature1, k2, p2, temperature2, num_of_queries):
torch.manual_seed(42)
tokenizer_1 = GPT2Tokenizer.from_pretrained(model_name)
model_1 = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id).cuda()
KL_scores = []
chi_scores = []
for i in [9, 20]:
for j in [0, 10, 25]:
temp = test_dataset['Stories'][i].split()[2:10+j]
temp = ' '.join(temp)
seq_length = len(tokenizer_1(temp, return_tensors='pt')['input_ids'][0])
input_ids = tokenizer_1(temp, return_tensors='pt').to(device)
original_tokens_1 = []
for k in range(num_of_queries):
temp_text = model_1.generate(**input_ids, max_length=seq_length+2, do_sample=True, top_k = k1, top_p = p1, temperature = temperature1)
temp_text = tokenizer_1.decode(temp_text[0][seq_length], skip_special_tokens=True)
original_tokens_1.append(temp_text)
original_tokens_1_df = count_tokens(original_tokens_1)
original_tokens_1_df = original_tokens_1_df.reset_index()
original_tokens_1_df.drop(['index'], axis=1)
predicted_tokens_1 = []
for k in range(num_of_queries):
temp_text = model_1.generate(**input_ids, max_length=seq_length+2, do_sample=True, top_k = k2, top_p = p2, temperature = temperature2)
temp_text = tokenizer_1.decode(temp_text[0][seq_length], skip_special_tokens=True)
predicted_tokens_1.append(temp_text)
predicted_tokens_1_df = count_tokens(predicted_tokens_1)
predicted_tokens_1_df = predicted_tokens_1_df.reset_index()
predicted_tokens_1_df.drop(['index'], axis=1)
l1 = create_hist(original_tokens_1)
l2 = create_hist(predicted_tokens_1)
statistic, p_value = ks_2samp(l1, l2)
print(p_value)
KS_scores.append(p_value)
conf_interval = st.t.interval(alpha=0.95, df=len(KS_scores)-1, loc=np.mean(KS_scores), scale=st.sem(KS_scores))
estimated_value = mean(KS_scores)
return conf_interval, estimated_value
# In[ ]:
args = parse_option()
KL_confidence_interval, KL_score = KL_evaluation(args.targeted_model, df, args.original_k, args.original_p, args.original_temperature, args.estimated_k, args.estimated_p, args.estimated_temperature, args.number_of_queries)
KS_confidence_interval, KS_score = KS_evaluation(args.targeted_model, df, args.original_k, args.original_p, args.original_temperature, args.estimated_k, args.estimated_p, args.estimated_temperature, args.number_of_queries)
print("The confidence interval of KL_score: " + str(KL_confidence_interval))
print("The KL_score: " + str(KL_score))
print("The confidence interval of KS_score: " + str(KS_confidence_interval))
print("The KS_score: " + str(KS_score))