/** * Author: Adrito Mukherjee * Binary Lifting implementation in Javascript * Binary Lifting is a technique that is used to find the kth ancestor of a node in a rooted tree with N nodes * The technique requires preprocessing the tree in O(N log N) using dynamic programming * The technique can answer Q queries about kth ancestor of any node in O(Q log N) * It is faster than the naive algorithm that answers Q queries with complexity O(Q K) * It can be used to find Lowest Common Ancestor of two nodes in O(log N) * Tutorial on Binary Lifting: https://codeforces.com/blog/entry/100826 */ export class BinaryLifting { constructor(root, tree) { this.root = root this.connections = new Map() this.up = new Map() // up[node][i] stores the 2^i-th parent of node for (const [i, j] of tree) { this.addEdge(i, j) } this.log = Math.ceil(Math.log2(this.connections.size)) this.dfs(root, root) } addNode(node) { // Function to add a node to the tree (connection represented by set) this.connections.set(node, new Set()) } addEdge(node1, node2) { // Function to add an edge (adds the node too if they are not present in the tree) if (!this.connections.has(node1)) { this.addNode(node1) } if (!this.connections.has(node2)) { this.addNode(node2) } this.connections.get(node1).add(node2) this.connections.get(node2).add(node1) } dfs(node, parent) { // The dfs function calculates 2^i-th ancestor of all nodes for i ranging from 0 to this.log // We make use of the fact the two consecutive jumps of length 2^(i-1) make the total jump length 2^i this.up.set(node, new Map()) this.up.get(node).set(0, parent) for (let i = 1; i < this.log; i++) { this.up .get(node) .set(i, this.up.get(this.up.get(node).get(i - 1)).get(i - 1)) } for (const child of this.connections.get(node)) { if (child !== parent) this.dfs(child, node) } } kthAncestor(node, k) { // if value of k is more than or equal to the number of total nodes, we return the root of the graph if (k >= this.connections.size) { return this.root } // if i-th bit is set in the binary representation of k, we jump from a node to its 2^i-th ancestor // so after checking all bits of k, we will have made jumps of total length k, in just log k steps for (let i = 0; i < this.log; i++) { if (k & (1 << i)) { node = this.up.get(node).get(i) } } return node } } function binaryLifting(root, tree, queries) { const graphObject = new BinaryLifting(root, tree) const ancestors = [] for (const [node, k] of queries) { const ancestor = graphObject.kthAncestor(node, k) ancestors.push(ancestor) } return ancestors } export default binaryLifting