import { extendedEuclideanGCD } from './ExtendedEuclideanGCD' /** * https://brilliant.org/wiki/modular-arithmetic/ * @param {Number} arg1 first argument * @param {Number} arg2 second argument * @returns {Number} */ export class ModRing { constructor(MOD) { this.MOD = MOD } isInputValid = (arg1, arg2) => { if (!this.MOD) { throw new Error('Modulus must be initialized in the object constructor') } if (typeof arg1 !== 'number' || typeof arg2 !== 'number') { throw new TypeError('Input must be Numbers') } } /** * Modulus is Distributive property, * As a result, we separate it into numbers in order to keep it within MOD's range */ add = (arg1, arg2) => { this.isInputValid(arg1, arg2) return ((arg1 % this.MOD) + (arg2 % this.MOD)) % this.MOD } subtract = (arg1, arg2) => { this.isInputValid(arg1, arg2) // An extra MOD is added to check negative results return ((arg1 % this.MOD) - (arg2 % this.MOD) + this.MOD) % this.MOD } multiply = (arg1, arg2) => { this.isInputValid(arg1, arg2) return ((arg1 % this.MOD) * (arg2 % this.MOD)) % this.MOD } /** * * It is not Possible to find Division directly like the above methods, * So we have to use the Extended Euclidean Theorem for finding Multiplicative Inverse * https://github.com/TheAlgorithms/JavaScript/blob/master/Maths/ExtendedEuclideanGCD.js */ divide = (arg1, arg2) => { // 1st Index contains the required result // The theorem may have return Negative value, we need to add MOD to make it Positive return (extendedEuclideanGCD(arg1, arg2)[1] + this.MOD) % this.MOD } }